cs.AI updates on arXiv.org 09月26日
基于知识图谱的LoRA模型解释框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于知识图谱的LoRA模型解释框架,通过构建生物信息工具领域的异构知识图谱,设计了一种基于反事实的微调LLM解释器,揭示了模型结构依赖和LoRA参数变化。

arXiv:2509.21241v1 Announce Type: cross Abstract: The widespread adoption of Low-Rank Adaptation (LoRA) has enabled large language models (LLMs) to acquire domain-specific knowledge with remarkable efficiency. However, understanding how such a fine-tuning mechanism alters a model's structural reasoning and semantic behavior remains an open challenge. This work introduces a novel framework that explains fine-tuned LLMs via counterfactuals grounded in knowledge graphs. Specifically, we construct BioToolKG, a domain-specific heterogeneous knowledge graph in bioinformatics tools and design a counterfactual-based fine-tuned LLMs explainer (CFFTLLMExplainer) that learns soft masks over graph nodes and edges to generate minimal structural perturbations that induce maximum semantic divergence. Our method jointly optimizes structural sparsity and semantic divergence while enforcing interpretability preserving constraints such as entropy regularization and edge smoothness. We apply this framework to a fine-tuned LLaMA-based LLM and reveal that counterfactual masking exposes the model's structural dependencies and aligns with LoRA-induced parameter shifts. This work provides new insights into the internal mechanisms of fine-tuned LLMs and highlights counterfactual graphs as a potential tool for interpretable AI.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LoRA模型 知识图谱 模型解释 生物信息工具 反事实
相关文章