cs.AI updates on arXiv.org 09月26日
iatroX平台助力临床信息处理
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了英国iatroX平台,一个基于RAG技术的临床参考平台,通过早期使用评估,发现其有助于减轻临床信息过载,提高临床工作效率。

arXiv:2509.21188v1 Announce Type: cross Abstract: Clinicians face growing information overload from biomedical literature and guidelines, hindering evidence-based care. Retrieval-augmented generation (RAG) with large language models may provide fast, provenance-linked answers, but requires real-world evaluation. We describe iatroX, a UK-centred RAG-based clinical reference platform, and report early adoption, usability, and perceived clinical value from a formative implementation evaluation. Methods comprised a retrospective analysis of usage across web, iOS, and Android over 16 weeks (8 April-31 July 2025) and an in-product intercept survey. Usage metrics were drawn from web and app analytics with bot filtering. A client-side script randomized single-item prompts to approx. 10% of web sessions from a predefined battery assessing usefulness, reliability, and adoption intent. Proportions were summarized with Wilson 95% confidence intervals; free-text comments underwent thematic content analysis. iatroX reached 19,269 unique web users, 202,660 engagement events, and approx. 40,000 clinical queries. Mobile uptake included 1,960 iOS downloads and Android growth (peak >750 daily active users). The survey yielded 1,223 item-level responses: perceived usefulness 86.2% (95% CI 74.8-93.9%; 50/58); would use again 93.3% (95% CI 68.1-99.8%; 14/15); recommend to a colleague 88.4% (95% CI 75.1-95.9%; 38/43); perceived accuracy 75.0% (95% CI 58.8-87.3%; 30/40); reliability 79.4% (95% CI 62.1-91.3%; 27/34). Themes highlighted speed, guideline-linked answers, and UK specificity. Early real-world use suggests iatroX can mitigate information overload and support timely answers for UK clinicians. Limitations include small per-item samples and early-adopter bias; future work will include accuracy audits and prospective studies on workflow and care quality.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

iatroX平台 RAG技术 临床信息处理
相关文章