cs.AI updates on arXiv.org 09月26日
WAVECLIP:基于小波分解的CLIP自适应分辨率推理模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出WAVECLIP,一种基于小波分解的自适应分辨率推理模型,用于CLIP。该模型通过多级小波分解,实现从粗到细的图像处理,支持模型内部的多分辨率。模型在推理时从低分辨率开始,并在需要时进行细化,通过键值缓存和因果跨层注意力机制重用计算,仅在需要时引入新信息。WAVECLIP在零样本分类中表现良好,允许用户通过单一部署模型动态选择计算-准确度权衡。

arXiv:2509.21153v1 Announce Type: cross Abstract: We introduce WAVECLIP, a single unified model for adaptive resolution inference in CLIP, enabled by wavelet-based tokenization. WAVECLIP replaces standard patch embeddings with a multi-level wavelet decomposition, enabling the model to process images coarse to fine while naturally supporting multiple resolutions within the same model. At inference time, the model begins with low resolution tokens and refines only when needed, using key-value caching and causal cross-level attention to reuse computation, effectively introducing to the model only new information when needed. We evaluate WAVECLIP in zero-shot classification, demonstrating that a simple confidence-based gating mechanism enables adaptive early exits. This allows users to dynamically choose a compute-accuracy trade-off using a single deployed model. Our approach requires only lightweight distillation from a frozen CLIP teacher and achieves competitive accuracy with significant computational savings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

WAVECLIP CLIP 自适应分辨率 小波分解 零样本分类
相关文章