cs.AI updates on arXiv.org 09月26日
安全自主系统软件架构研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种增强学习型自主系统安全、安全和可预测性的软件架构,通过隔离执行域和实时监控,实现故障安全机制。

arXiv:2509.21014v1 Announce Type: cross Abstract: Recently, the outstanding performance reached by neural networks in many tasks has led to their deployment in autonomous systems, such as robots and vehicles. However, neural networks are not yet trustworthy, being prone to different types of misbehavior, such as anomalous samples, distribution shifts, adversarial attacks, and other threats. Furthermore, frameworks for accelerating the inference of neural networks typically run on rich operating systems that are less predictable in terms of timing behavior and present larger surfaces for cyber-attacks. To address these issues, this paper presents a software architecture for enhancing safety, security, and predictability levels of learning-based autonomous systems. It leverages two isolated execution domains, one dedicated to the execution of neural networks under a rich operating system, which is deemed not trustworthy, and one responsible for running safety-critical functions, possibly under a different operating system capable of handling real-time constraints. Both domains are hosted on the same computing platform and isolated through a type-1 real-time hypervisor enabling fast and predictable inter-domain communication to exchange real-time data. The two domains cooperate to provide a fail-safe mechanism based on a safety monitor, which oversees the state of the system and switches to a simpler but safer backup module, hosted in the safety-critical domain, whenever its behavior is considered untrustworthy. The effectiveness of the proposed architecture is illustrated by a set of experiments performed on two control systems: a Furuta pendulum and a rover. The results confirm the utility of the fall-back mechanism in preventing faults due to the learning component.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自主系统 软件架构 安全监控
相关文章