cs.AI updates on arXiv.org 09月26日
ExMoIRL:AI驱动新药发现新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ExMoIRL,一种将表型引导与靶点意识结合的AI新药发现框架,通过多目标强化学习优化分子生成,显著提升药物候选物的质量。

arXiv:2509.21010v1 Announce Type: cross Abstract: The generation of high-quality candidate molecules remains a central challenge in AI-driven drug design. Current phenotype-based and target-based strategies each suffer limitations, either incurring high experimental costs or overlook system-level cellular responses. To bridge this gap, we propose ExMoIRL, a novel generative framework that synergistically integrates phenotypic and target-specific cues for de novo molecular generation. The phenotype-guided generator is first pretrained on expansive drug-induced transcriptional profiles and subsequently fine-tuned via multi-objective reinforcement learning (RL). Crucially, the reward function fuses docking affinity and drug-likeness scores, augmented with ranking loss, prior-likelihood regularization, and entropy maximization. The multi-objective RL steers the model toward chemotypes that are simultaneously potent, diverse, and aligned with the specified phenotypic effects. Extensive experiments demonstrate ExMoIRL's superior performance over state-of-the-art phenotype-based and target-based models across multiple well-characterized targets. Our generated molecules exhibit favorable drug-like properties, high target affinity, and inhibitory potency (IC50) against cancer cells. This unified framework showcases the synergistic potential of combining phenotype-guided and target-aware strategies, offering a more effective solution for de novo drug discovery.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI药物设计 多目标强化学习 新药发现
相关文章