cs.AI updates on arXiv.org 09月26日
FracAug:解决图级异常检测难题
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为FracAug的创新性插件式增强框架,用于提升图神经网络(GNNs)在图级异常检测(GAD)中的性能,通过生成语义一致的图变体和互验证的伪标签,有效解决了高标注成本和数据集不平衡问题。

arXiv:2509.20978v1 Announce Type: cross Abstract: Graph-level anomaly detection (GAD) is critical in diverse domains such as drug discovery, yet high labeling costs and dataset imbalance hamper the performance of Graph Neural Networks (GNNs). To address these issues, we propose FracAug, an innovative plug-in augmentation framework that enhances GNNs by generating semantically consistent graph variants and pseudo-labeling with mutual verification. Unlike previous heuristic methods, FracAug learns semantics within given graphs and synthesizes fractional variants, guided by a novel weighted distance-aware margin loss. This captures multi-scale topology to generate diverse, semantic-preserving graphs unaffected by data imbalance. Then, FracAug utilizes predictions from both original and augmented graphs to pseudo-label unlabeled data, iteratively expanding the training set. As a model-agnostic module compatible with various GNNs, FracAug demonstrates remarkable universality and efficacy: experiments across 14 GNNs on 12 real-world datasets show consistent gains, boosting average AUROC, AUPRC, and F1-score by up to 5.72%, 7.23%, and 4.18%, respectively.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图级异常检测 图神经网络 数据增强 伪标签 FracAug
相关文章