cs.AI updates on arXiv.org 09月26日
高效合成图像检测:FerretNet神经网络
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为FerretNet的轻量级神经网络,用于合成图像检测。通过利用局部像素依赖性(LPD)重建图像,揭示纹理连续性和边缘一致性中断,在ProGAN数据集上训练,实现97.1%的平均准确率。

arXiv:2509.20890v1 Announce Type: cross Abstract: The increasing realism of synthetic images generated by advanced models such as VAEs, GANs, and LDMs poses significant challenges for synthetic image detection. To address this issue, we explore two artifact types introduced during the generation process: (1) latent distribution deviations and (2) decoding-induced smoothing effects, which manifest as inconsistencies in local textures, edges, and color transitions. Leveraging local pixel dependencies (LPD) properties rooted in Markov Random Fields, we reconstruct synthetic images using neighboring pixel information to expose disruptions in texture continuity and edge coherence. Building upon LPD, we propose FerretNet, a lightweight neural network with only 1.1M parameters that delivers efficient and robust synthetic image detection. Extensive experiments demonstrate that FerretNet, trained exclusively on the 4-class ProGAN dataset, achieves an average accuracy of 97.1% on an open-world benchmark comprising across 22 generative models, surpassing state-of-the-art methods by 10.6%.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

合成图像检测 神经网络 FerretNet LPD 图像重建
相关文章