cs.AI updates on arXiv.org 09月26日
C2R:问答任务中无监督的置信度引导推理框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为C2R的无监督问答任务训练框架,通过构建和优化子问题及其答案,提高目标答案的置信度。C2R框架能够跨文本、图像和视频领域应用,并集成到现有问答模型中,提升模型性能。

arXiv:2509.20750v1 Announce Type: cross Abstract: We propose Confidence-guided Refinement Reasoning (C2R), a novel training-free framework applicable to question-answering (QA) tasks across text, image, and video domains. C2R strategically constructs and refines sub-questions and their answers (sub-QAs), deriving a better confidence score for the target answer. C2R first curates a subset of sub-QAs to explore diverse reasoning paths, then compares the confidence scores of the resulting answer candidates to select the most reliable final answer. Since C2R relies solely on confidence scores derived from the model itself, it can be seamlessly integrated with various existing QA models, demonstrating consistent performance improvements across diverse models and benchmarks. Furthermore, we provide essential yet underexplored insights into how leveraging sub-QAs affects model behavior, specifically analyzing the impact of both the quantity and quality of sub-QAs on achieving robust and reliable reasoning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

C2R 问答任务 置信度引导 无监督学习 模型集成
相关文章