cs.AI updates on arXiv.org 09月26日
FIRM-DTI:轻量级药物靶标亲和力预测模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FIRM-DTI模型,通过FiLM层和三元组损失实现分子嵌入与蛋白嵌入的条件化,提高药物靶标亲和力预测的准确性和泛化能力。

arXiv:2509.20693v1 Announce Type: cross Abstract: Accurate prediction of drug-target binding affinity can accelerate drug discovery by prioritizing promising compounds before costly wet-lab screening. While deep learning has advanced this task, most models fuse ligand and protein representations via simple concatenation and lack explicit geometric regularization, resulting in poor generalization across chemical space and time. We introduce FIRM-DTI, a lightweight framework that conditions molecular embeddings on protein embeddings through a feature-wise linear modulation (FiLM) layer and enforces metric structure with a triplet loss. An RBF regression head operating on embedding distances yields smooth, interpretable affinity predictions. Despite its modest size, FIRM-DTI achieves state-of-the-art performance on the Therapeutics Data Commons DTI-DG benchmark, as demonstrated by an extensive ablation study and out-of-domain evaluation. Our results underscore the value of conditioning and metric learning for robust drug-target affinity prediction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

药物靶标 亲和力预测 深度学习 FiLM 三元组损失
相关文章