cs.AI updates on arXiv.org 09月26日
用户控制水平动态切换研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过手脑象棋实验,研究用户在决策任务中如何动态切换控制水平,并基于行为信号训练模型预测控制切换,为共享自主系统设计提供参考。

arXiv:2509.20666v1 Announce Type: cross Abstract: Human-AI collaboration is typically offered in one of two of user control levels: guidance, where the AI provides suggestions and the human makes the final decision, and delegation, where the AI acts autonomously within user-defined constraints. Systems that integrate both modes, common in robotic surgery or driving assistance, often overlook shifts in user preferences within a task in response to factors like evolving trust, decision complexity, and perceived control. In this work, we investigate how users dynamically switch between higher and lower levels of control during a sequential decision-making task. Using a hand-and-brain chess setup, participants either selected a piece and the AI decided how it moved (brain mode), or the AI selected a piece and the participant decided how it moved (hand mode). We collected over 400 mode-switching decisions from eight participants, along with gaze, emotional state, and subtask difficulty data. Statistical analysis revealed significant differences in gaze patterns and subtask complexity prior to a switch and in the quality of the subsequent move. Based on these results, we engineered behavioral and task-specific features to train a lightweight model that predicted control level switches ($F1 = 0.65$). The model performance suggests that real-time behavioral signals can serve as a complementary input alongside system-driven mode-switching mechanisms currently used. We complement our quantitative results with qualitative factors that influence switching including perceived AI ability, decision complexity, and level of control, identified from post-game interview analysis. The combined behavioral and modeling insights can help inform the design of shared autonomy systems that need dynamic, subtask-level control switches aligned with user intent and evolving task demands.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

用户控制 决策任务 控制切换 共享自主系统 行为信号
相关文章