cs.AI updates on arXiv.org 09月26日
NPC模型对抗攻击分析与改进
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了NPC模型在对抗攻击下的脆弱性,提出了一种名为RNPC的改进模型,增强了其对抗鲁棒性,并通过实验验证了其在图像分类任务上的优越性能。

arXiv:2509.20549v1 Announce Type: cross Abstract: Neural Probabilistic Circuits (NPCs), a new class of concept bottleneck models, comprise an attribute recognition model and a probabilistic circuit for reasoning. By integrating the outputs from these two modules, NPCs produce compositional and interpretable predictions. While offering enhanced interpretability and high performance on downstream tasks, the neural-network-based attribute recognition model remains a black box. This vulnerability allows adversarial attacks to manipulate attribute predictions by introducing carefully crafted subtle perturbations to input images, potentially compromising the final predictions. In this paper, we theoretically analyze the adversarial robustness of NPC and demonstrate that it only depends on the robustness of the attribute recognition model and is independent of the robustness of the probabilistic circuit. Moreover, we propose RNPC, the first robust neural probabilistic circuit against adversarial attacks on the recognition module. RNPC introduces a novel class-wise integration for inference, ensuring a robust combination of outputs from the two modules. Our theoretical analysis demonstrates that RNPC exhibits provably improved adversarial robustness compared to NPC. Empirical results on image classification tasks show that RNPC achieves superior adversarial robustness compared to existing concept bottleneck models while maintaining high accuracy on benign inputs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NPC模型 对抗攻击 鲁棒性 图像分类 改进
相关文章