cs.AI updates on arXiv.org 09月26日
通用神经空间模型提升图像处理效率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种通用神经空间模型,解决图像处理中多个模块任务的不效率问题。该模型通过预计算特征,实现多个模块共享特征空间,降低冗余,提高泛化能力,并适用于多种硬件。

arXiv:2509.20481v1 Announce Type: cross Abstract: The majority of AI models in imaging and vision are customized to perform on specific high-precision task. However, this strategy is inefficient for applications with a series of modular tasks, since each requires a mapping into a disparate latent domain. To address this inefficiency, we proposed a universal Neural Space (NS), where an encoder-decoder framework pre-computes features across vision and imaging tasks. Our encoder learns transformation aware, generalizable representations, which enable multiple downstream AI modules to share the same feature space. This architecture reduces redundancy, improves generalization across domain shift, and establishes a foundation for effecient multi-task vision pipelines. Furthermore, as opposed to larger transformer backbones, our backbone is lightweight and CNN-based, allowing for wider across hardware. We furthur demonstrate that imaging and vision modules, such as demosaicing, denoising, depth estimation and semantic segmentation can be performed efficiently in the NS.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像处理 神经空间模型 多任务处理
相关文章