cs.AI updates on arXiv.org 09月26日
USB-Rec:提升对话推荐系统LLM性能的新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于用户模拟器的框架(USB-Rec),通过整合训练-推理流程,优化LLM在对话推荐系统中的性能。设计了一种基于LLM的偏好优化数据集构建策略,并提出了自增强策略以进一步挖掘潜力。

arXiv:2509.20381v1 Announce Type: cross Abstract: Recently, Large Language Models (LLMs) have been widely employed in Conversational Recommender Systems (CRSs). Unlike traditional language model approaches that focus on training, all existing LLMs-based approaches are mainly centered around how to leverage the summarization and analysis capabilities of LLMs while ignoring the issue of training. Therefore, in this work, we propose an integrated training-inference framework, User-Simulator-Based framework (USB-Rec), for improving the performance of LLMs in conversational recommendation at the model level. Firstly, we design a LLM-based Preference Optimization (PO) dataset construction strategy for RL training, which helps the LLMs understand the strategies and methods in conversational recommendation. Secondly, we propose a Self-Enhancement Strategy (SES) at the inference stage to further exploit the conversational recommendation potential obtained from RL training. Extensive experiments on various datasets demonstrate that our method consistently outperforms previous state-of-the-art methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 对话推荐系统 训练-推理框架 偏好优化 自增强策略
相关文章