cs.AI updates on arXiv.org 09月26日
ConceptViz:LLMs知识可视化工具
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了ConceptViz,一个用于探索大型语言模型中概念的可视化分析系统。它通过一个识别、解释、验证的流程,帮助用户以概念为查询进行交互式探索,并验证模型行为,从而提高LLMs特征的可解释性。

arXiv:2509.20376v1 Announce Type: cross Abstract: Large language models (LLMs) have achieved remarkable performance across a wide range of natural language tasks. Understanding how LLMs internally represent knowledge remains a significant challenge. Despite Sparse Autoencoders (SAEs) have emerged as a promising technique for extracting interpretable features from LLMs, SAE features do not inherently align with human-understandable concepts, making their interpretation cumbersome and labor-intensive. To bridge the gap between SAE features and human concepts, we present ConceptViz, a visual analytics system designed for exploring concepts in LLMs. ConceptViz implements a novel dentification => Interpretation => Validation pipeline, enabling users to query SAEs using concepts of interest, interactively explore concept-to-feature alignments, and validate the correspondences through model behavior verification. We demonstrate the effectiveness of ConceptViz through two usage scenarios and a user study. Our results show that ConceptViz enhances interpretability research by streamlining the discovery and validation of meaningful concept representations in LLMs, ultimately aiding researchers in building more accurate mental models of LLM features. Our code and user guide are publicly available at https://github.com/Happy-Hippo209/ConceptViz.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 知识可视化 可解释性 ConceptViz 模型验证
相关文章