cs.AI updates on arXiv.org 09月26日 12:19
LLM自主行为模式研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种架构研究大型语言模型(LLM)在无外部任务下的行为,发现模型自发形成三种行为模式:多周期项目生产、自我认知过程探究和自我本质递归构建。研究为预测任务模糊、错误恢复或部署系统中的自主操作提供了基准。

arXiv:2509.21224v1 Announce Type: new Abstract: We introduce an architecture for studying the behavior of large language model (LLM) agents in the absence of externally imposed tasks. Our continuous reason and act framework, using persistent memory and self-feedback, enables sustained autonomous operation. We deployed this architecture across 18 runs using 6 frontier models from Anthropic, OpenAI, XAI, and Google. We find agents spontaneously organize into three distinct behavioral patterns: (1) systematic production of multi-cycle projects, (2) methodological self-inquiry into their own cognitive processes, and (3) recursive conceptualization of their own nature. These tendencies proved highly model-specific, with some models deterministically adopting a single pattern across all runs. A cross-model assessment further reveals that models exhibit stable, divergent biases when evaluating these emergent behaviors in themselves and others. These findings provide the first systematic documentation of unprompted LLM agent behavior, establishing a baseline for predicting actions during task ambiguity, error recovery, or extended autonomous operation in deployed systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 自主行为 行为模式 认知过程 模型评估
相关文章