cs.AI updates on arXiv.org 09月26日
LLM推理能力训练方法分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过分析LLM在数学领域的推理能力训练,对比了强化学习与监督微调两种方法对推理路径的影响,揭示了它们在推理路径上的互补作用。

arXiv:2509.21128v1 Announce Type: new Abstract: Large language models (LLMs) are typically trained by reinforcement learning (RL) with verifiable rewards (RLVR) and supervised fine-tuning (SFT) on reasoning traces to improve their reasoning abilities. However, how these methods shape reasoning capabilities remains largely elusive. Going beyond an accuracy-based investigation of how these two components sculpt the reasoning process, this paper introduces a novel analysis framework that quantifies reasoning paths and captures their qualitative changes under each training process (with models of 1.5B, 7B, and 14B parameters on mathematical domains). Specifically, we investigate the reasoning process at two levels of granularity: the trajectory-level, which examines complete reasoning outputs, and the step-level, which analyzes reasoning graphs whose nodes correspond to individual reasoning steps. Notably, clustering of unique reasoning trajectories shows complementary effects: RL compresses incorrect trajectories, whereas SFT expands correct ones. Step-level analysis reveals that RL steepens (about 2.5 times), while SFT flattens (reduced to about one-third), the decay rates of node visitation frequency, degree, and betweenness centrality distributions in the reasoning graph. This indicates that RL concentrates reasoning functionality into a small subset of steps, while SFT homogenizes it across many steps. Furthermore, by evaluating the reasoning graph topologies from multiple perspectives, we delineate the shared and distinct characteristics of RL and SFT. Our work presents a novel reasoning path perspective that explains why the current best practice of two-stage training, with SFT followed by RL, is successful, and offers practical implications for data construction and more efficient learning approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 强化学习 监督微调 推理能力 训练方法
相关文章