cs.AI updates on arXiv.org 09月26日
SciTrek:评估LLM长文推理能力的新基准
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了SciTrek,一个评估大型语言模型(LLM)在科学文献中的长文推理能力的新型问答基准。SciTrek通过复杂的跨多篇科学文章的信息整合与合成问题来解决现有长文基准的局限性,并通过数据库自动生成问题及其真实答案,为精细误差分析提供可验证的推理步骤。实验显示,随着上下文长度的增加,SciTrek对LLM提出了重大挑战。

arXiv:2509.21028v1 Announce Type: new Abstract: This paper introduces SciTrek, a novel question-answering benchmark designed to evaluate the long-context reasoning capabilities of large language models (LLMs) using scientific articles. Current long-context benchmarks often rely on non-scientific texts, focus on simple information retrieval tasks, or employ artificial contexts. SciTrek addresses these limitations by proposing complex questions that require information aggregation and synthesis across multiple full-text scientific articles. Questions and their ground-truth answers are automatically generated by formulating them as SQL queries over a database constructed from article metadata (titles, authors, and references). The SQL operations provide explicit, verifiable reasoning steps for fine-grained error analysis, and the construction process scales to contexts up to 1M tokens with minimal supervision. Extensive experiments on a diverse set of open-weight and proprietary LLMs demonstrate that SciTrek poses a significant challenge as the context length increases, with supervised fine-tuning and reinforcement learning offering only limited gains. Our analysis reveals systematic shortcomings in models' abilities to perform basic numerical operations and accurately locate specific information in long contexts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SciTrek LLM 长文推理 问答基准 科学文献
相关文章