cs.AI updates on arXiv.org 09月26日
融合AR与NAR模型加速推理任务
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合自回归(AR)和非自回归(NAR)语言模型的推理任务框架。该框架利用NAR模型高效生成中间推理轨迹,引导AR模型提供精确答案,显著提升推理速度和精度。

arXiv:2509.20744v1 Announce Type: new Abstract: We study reasoning tasks through a framework that integrates auto-regressive (AR) and non-autoregressive (NAR) language models. AR models, which generate text sequentially, excel at producing coherent outputs but often suffer from slow inference, particularly in reasoning-intensive domains such as mathematics and code, where lengthy chains of thought are required. In contrast, NAR models, such as discrete diffusion models, allow parallel generation and offer substantial speedups, though typically at the cost of reduced output quality. To address these limitations, we introduce a new paradigm in which an NAR model efficiently produces intermediate reasoning traces, which subsequently guide an AR model to deliver precise final answers. Experiments demonstrate that our approach yields significant 26% improvements over strong baselines while substantially reducing inference cost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

推理任务 AR模型 NAR模型 语言模型 推理加速
相关文章