Hello Paperspace 09月25日
NLP模型在深度学习推动下的进展与挑战
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

深度学习技术极大地推动了自然语言处理(NLP)领域的发展,显著提升了模型在文本分类、自然语言推理、情感分析和机器翻译等任务上的表现。然而,NLP模型仍面临对抗性攻击的风险,这种攻击通过微小的数据扰动来欺骗模型。与图像数据不同,文本数据的离散性使得生成对抗样本更具挑战性。本文概述了三种主要的防御机制:对抗性训练、扰动控制和认证。对抗性训练通过在训练过程中引入对抗样本来增强模型韧性,而扰动控制则侧重于识别和纠正潜在的对抗性输入。认证方法则通过数学证明来保证模型在特定扰动下的鲁棒性,其中线性松弛和区间界限传播是常用的技术。

🤖 **深度学习驱动NLP的飞跃与固有风险**:深度学习已成为推动自然语言处理(NLP)领域革新的关键力量,显著提升了模型在多项核心任务上的表现,如文本分类、自然语言推理、情感分析和机器翻译。这些先进算法通过学习海量数据,极大地扩展了NLP模型的灵活性和处理能力,带来了前所未有的高性能成果。然而,随着模型能力的增强,其潜在的脆弱性也日益凸显,特别是来自对抗性攻击的威胁,这些攻击通过不易察觉的微小扰动就能有效地误导模型,从而影响其输出的准确性和可靠性。

⚔️ **文本数据的离散性带来的对抗性攻击挑战**:与图像等连续数据不同,文本数据的离散特性使得生成有效的对抗性样本成为一项复杂且充满挑战的任务。攻击者需要精确地修改文本,以达到欺骗NLP模型的目标,同时还要保持文本的自然流畅和语义完整性。这种挑战性促使研究人员开发更精细的攻击策略和更强大的防御机制,以应对NLP模型在现实世界应用中的安全性和可靠性问题。

🛡️ **多维度防御策略应对对抗性威胁**:为了增强NLP模型抵御对抗性攻击的能力,研究人员提出了多种防御策略。本文重点介绍了三种主要方法:1. **对抗性训练**:通过在模型训练阶段引入对抗样本,迫使模型学习识别和抵抗这些扰动,从而提高其整体鲁棒性。2. **扰动控制**:此方法侧重于识别输入文本中的潜在对抗性扰动,并对其进行纠正或移除,以恢复文本的原始含义和模型预测的准确性。3. **认证方法**:这是一种更严格的防御手段,通过数学证明来保证模型在特定范围内的输入扰动下,其输出保持一致性。其中,**线性松弛**和**区间界限传播**是常用的技术,它们能够为模型提供可量化的鲁棒性保证,确保模型在面对细微输入变化时依然稳定可靠。

The sphere of Natural language processing or NLP has undergone inspiring breakthrough due to the incorporation of state-of-art deep learning techniques. These algorithms have improved the internal flexibility of NLP models exponentially beyond human possibility.

They have excelled in tasks such as text classification, natural language inference, sentiment analysis, and machine translation. By leveraging large amounts of data - these deep learning frameworks are revolutionizing how we process and understand language. They are inspiring high-performance outcomes across countless NLP tasks.

Despite the advances that have been witnessed in the sector of Natural Language Processing (NLP) there are still open issues including risk of adversarial attacks. Usually, such attacks involve injecting small perturbations into the data that are hardly noticeable, but effective enough to deceive an NLP model and skew its results.

The presence of adversarial attacks in natural language processing can pose a challenge, as opposed to continuous data such as images. This is primarily due to the discrete nature of text-based data which renders the effective generation of adversarial examples more complex.

Many mechanisms have been established to defend against the attacks. This article offers an overview of adversarial mechanisms that can be classified under three broad categories: adversarial training-based methods, perturbation control-based methods and certification-based methods.

Overview of Adversarial Attacks in NLP

Understanding of the different types of attacks is imperative to create robust defenses and fostering confidence in NLP models' reliability.

Types of Attacks

The diagram below describe the different types of attacks.

Types of attacks in NLP

Adversarial attacks in the field of Natural Language Processing (NLP) have the potential to affect diverse text granularities, spanning from individual characters up to entire sentences. They may also exploit several levels concurrently for more complex attacks.

Black Box vs. White Box Attacks

The classification of adversarial attacks on NLP models can be generally characterized as two types(black-box attacks and white-box attacks) These depend upon the level of access that the attacker has to the model's parameters. It is imperative to understand these categories to establish defense mechanisms.

White Box Attacks

A white box attack entails an attacker having unrestricted control over all parameters associated with a particular model. Such factors include but are not limited to architecture, gradients and weights - granting extensive knowledge regarding internal operations. From this position of deep insight into said mechanisms, attackers can execute targeted adversarial measures with efficiency and precision.

Adversaries frequently leverage gradient-based methods to detect the most proficient perturbations. By computing the gradients of the loss function with respect to the input, attackers can deduce which modifications to inputs would have a substantial impact on model output.

Owing to the extensive familiarity with the model, white box attacks have a tendency to achieve great success in fooling it.

Black Box Attacks

In the paradigm of black box attacks, access to a given model's parameters and architecture remains restricted for attackers. However, their communication with the model is restricted to input, to which the model responds with outputs.


The very nature of such an attacker is restricted, which makes black box attacks more complex. The observed queries are the only means by which they are forced to deduce the model’s inherent behavior.

Often, attackers engage in the process of training a surrogate model that emulates the patterns of operation exhibited by its intended target. This surrogate model is subsequently employed to formulate instances of adversarial nature.

Challenges in Generating NLP Adversarial Examples

The generation of effective adversarial examples in natural language processing (NLP) is a multifaceted undertaking that presents inherent challenges. These challenges arise from the complexity of linguistics, NLP model behavior, and constraints associated with attack methodologies. We will summarize these challenges in the following table:

ChallengeDescription
Semantic IntegrityEnsuring adversarial examples are semantically similar to the original text.
Linguistic DiversityMaintaining naturalness and diversity in the text to evade detection.
Model RobustnessOvercoming the defenses of advanced NLP models.
Evaluation MetricsLack of effective metrics to measure adversarial success.
Attack TransferabilityAchieving transferability of attacks across different models.
Computational ResourcesHigh computational demands for generating quality adversarial examples.
Human Intuition and CreativityUtilizing human creativity to generate realistic adversarial examples.

These challenges underscore the need for continued research and development efforts to advance the domain of adversarial attacks in natural language processing. They also highlight the importance to improve NLP systems' resilience against such attacks.

Adversarial Training-Based Defense Methods

The primary objective of adversarial training-based defense is to enhance the model's resilience. It's achieved by subjecting it to adversarial examples during its training phase. Additionally, it involves integrating an adversarial loss into the overall training objective.

Data Augmentation-Based Approaches

Approaches based on data augmentation entail creating adversarial examples and incorporating them into the training dataset. This strategy facilitates the development of a model's ability to manage perturbed inputs, enabling it to withstand attacks from adversaries with resilience.

For example, some methods may involve introducing noise into word embeddings or implementing synonym substitution as a means for generating adversarial examples. There are different approaches to performing data augmentation-based adversarial training. These include word level data augmentation, concatenation based data augmentation and generation based data augmentation.

Word-Level Data Augmentation


At the word-level, text data augmentation can be performed by applying some perturbations directly to the words of the input text. This can be achieved by substitution, addition, omission, or repositioning of words in a sentence or document. Through these perturbations, the model is trained to detect and address adversarial changes that occurs.

For exemple, the phrase "The movie was fantastic" may be transformed into "The film was great." Using these augmented datasets for training enables the model to generalize better and reduces its vulnerability against input perturbations.

Concatenation-Based and Generation-Based Data Augmentation

In concatenation-based approach, new sentences or phrases are added to the original text. This method can inject adversarial examples by concatenating other information that might change the model’s predictions. For example, in an image classification scenario, an adversarial example might be created by adding a misleading sentence to the input text.

The generation-based data augmentation generates new adversarial examples using generative models. Using Generative Adversarial Networks (GANs), it's possible to create adversarial texts that are syntactically and semantically correct. These generated examples are then incorporated into the training set to enhance the diversity of adversarial scenarios.

Regularization Techniques

Regularization techniques add adversarial loss to the training objective. This encourages the model to produce the same output for clean and adversarial pertubed inputs. By minimizing the difference in predictions on clean and adversarial examples, these methods make the model more robust to small perturbations.

In machine translation, regularization can be used to ensure that the translation is the same even if the input is slightly perturbed. For example, translating "She is going to the market" should give the same result if the input is changed to "She’s going to the market". This consistency makes the model more robust and reliable in real world applications.

GAN-Based Approaches

GANs use the power of Generative Adversarial Networks to improve robustness. In these methods a generator network creates adversarial examples and a discriminator network tries to distinguish between real and adversarial inputs. This adversarial training helps the model to learn to handle a wide range of possible perturbations. GANs have shown promise to improve performance on clean and adversarial inputs.
In a text classification task a GAN can be used to generate adversarial examples to challenge the classifier. For example generating sentences that are semantically similar but syntactically different, like changing "The weather is nice" to "Nice is the weather" can help the classifier to learn to recognize and classify these variations.

Virtual Adversarial Training and Human-In-The-Loop

Specialized techniques for adversarial training include Virtual Adversarial Training (VAT) and Human-In-The-Loop (HITL). VAT works by generating perturbations that maximize the model's prediction change in a small vicinity around each input. This improves local smoothness and robustness of the model.

On the contrary, HITL methods include human input during adversarial training. By requiring input from humans to create or validate challenging examples, these approaches generate more realistic and challenging inputs. This enhances a model's resilience against attacks.

All of these defense methods look very effective. They also present a set of approaches to enhance the resilience of NLP models from adversarial attacks. During model training, these approaches ensure models are trained with different types of adversarial examples hence making the NLP systems more robust.

Perturbation Control-Based Defense Methods

In NLP, defense techniques based on perturbation control aim to detect and alleviate negative impacts caused by adversarial perturbations. These strategies can be classified into two methods: perturbation identification and correction, and perturbation direction control.

The main objective of perturbation identification and correction techniques is to detect and address adversarial perturbations in the input text. They usually employ a few techniques to detect suspicious or adversarial inputs. For example, to detect out-of-distribution words or phrases, the model can use language models or rely on statistical techniques to detect unusual patterns in the text. After detection, these perturbations can be fixed or removed to bring the text back to its original meaning as intended.

On the other hand, perturbation direction control methods lean towards controlling the direction of possible perturbations to reduce their effect on the model’s outcome. Such techniques are usually applied by changing either the structure of the model or the training process itself to enhance the model’s robustness against specific types of perturbations.

Enhancing the Robustness of Customer Service Chatbots Using Perturbation Control-Based Defense Methods

Organizations are adopting customer service chatbots to manage customer inquiries and offer assistance. Nevertheless, these chatbots can be susceptible to adversarial attacks. Slight modifications in the input text may result in inaccurate or unreliable responses. To reinforce the resilience of such chatbots, defense mechanisms based on perturbation control can be used.

Enhancing chatbot robustness with perturbation control defense methods

The process starts by receiving a request from a customer. The first step is to identify and correct any perturbations in the input text that may be adversarial. This is achieved through language models and statistical techniques that recognize unusual patterns or out-of-distribution words indicative of such attacks. Once detected, they can be corrected through text sanitization (e.g., correcting spelling errors), or contextual replacement (i.e., replacing inappropriate words with more relevant ones).

The second stage focuses on perturbation direction control. This includes enhancing the chatbot's resistance against adversarial attacks. This can be achieved by adjusting the training process and modifying its model structure. To make it less vulnerable to slight modifications in the input text, robust embeddings, and layer normalization techniques are incorporated into the system.
The training mechanism is adjusted by integrating adversarial training and gradient masking. This process entails training the model on original and adversarial inputs, ensuring its capacity to proficiently manage perturbations.

Certification-Based Defense Methods in NLP

Certification-based defense methods offer a formal level of assurance of resistance against adversarial attacks in NLP models. These techniques ensure that the model performances remain consistent in a given neighborhood of the input space and can be considered as a more rigorous solution to the model robustness problem.

In contrast to adversarial training or perturbation control methods, certification-based methods allow proving mathematically that a particular model is robust against certain types of adversarial perturbations.

In the context of NLP, certification methods usually entails the specification of a set of allowable perturbation (for example, replacement of words, characters, etc.) of the original input and then ensuring the model's output remains consistent for all inputs within this defined set.

There are various methods to compute provable upper bounds on a model's output variations under input perturbations.

Linear Relaxation Techniques

Linear relaxation techniques involve approximating the non-linear operations that exist in a neural network by linear bounds. These techniques transform the exact non-linear constraints into linear ones.

Solving these linearized versions, we can get the upper and lower bounds of the output variations. Linear relaxation techniques provide a balance between computational efficiency and the tightness of the bounds, offering a practical way to verify the robustness of complex models.

Understanding Interval Bound Propagation

Interval bound propagation is a way to make the neural network models less sensitive to perturbation and to compute the interval of the network outputs. This method aids in ensuring that the model’s outputs stay bounded even when the inputs may be slightly changed.

The process can be defined as follows:

The above process can be visualized in the diagram below.

Interval Bound Propagation Process in Neural Networks

The above diagram highlights the steps taken to ensure that the outputs of the neural network are bounded despite of the input variations. It starts with the specification of the first input intervals.
When passing through layers of the network, inputs undergo more modifications such as multiplication and addition which modify the intervals.

For example, multiplying by 2 shifts the interval to [7. 0,9. 0], while adding 1 changes the interval to [8. 0,10. 0]. In each layer, the output provided as an interval encompasses all the possible values given the range of inputs.
Through this systematic tracking through the network, it's possible to guarantee the output interval. This makes the model resistant to small inputs.

Randomized Smoothing

On the other hand, randomized smoothing is another technique that involves adding random noise to inputs. It also includes statistical methods to guarantee robustness against known attacks and potential ones. The diagram below describe the process of randomized smoothing.

Randomized smoothing process for adversarial defense in NLP

In randomized smoothing, random noise is added to the word embeddings of a particular input text to get multiple perturbed versions of the text. Afterward, we integrate each noisy version into the model and produce an output for each of them.

These predictions are then combined, usually by a majority voting or probability averaging, to produce the final consistent prediction. This approach ensures that the model's outputs remain stable and accurate, even when the input text is subjected to small adversarial perturbations. By doing so, it strengthens the robustness of the model against adversarial attacks.

A legal tech company decides to build an NLP system for lawyers that would let them automatically review and summarize legal documents. The proper functioning of this system must be guaranteed because any error may lead to legal and financial penalties.

Use Case Implementation

Interval Bound Propagation

Interval bound propagation is incorporated into the NLP model of the legal tech company. When analysing a legal document, the model performs mathematical calculations to compute the intervals for every portion of the text. Even if some words or phrases have been slightly pertubed(for example, because of typo mistakes, or slight shifts in meaning), the calculated interval will still fall into a trustworthy range.

Exemple: If the original phrase is “contract breach,” a slight perturbation might change it to “contrct breach.” The interval bounds would make sure that the model knows that this phrase is still related to “contract breach.”

Linear Relaxation

The company approximate the nonlinear components of the NLP model using the linear relaxation technique. For example, the complex interactions between legal terms are simplified into linear segments, which are easier to verify for robustness.

Exemple: Terms such as ‘indemnity’ and ‘liability’ might interact in complex ways within a document. Linear relaxation approximates these interactions into simpler linear segments. This helps ensure that slight variations or typos of these terms such as using ‘indemnity’ to ‘indemnityy’ or ‘liability’ to ‘liabilitty’ don't mislead the model.

Randomized Smoothing

Exemple: During preprocessing, phrases like "agreement" might be randomly varied to "contract" or "understanding." Randomized smoothing ensures these variations do not affect the fundamental legal interpretation.

This approach facilitates the mitigation of unpredictable or substantial changes in model output resulting from small input variations (e.g., due to noise or minor adversarial alterations). As a result, it enhances the model's robustness.

In contexts where reliability is of utmost importance, such as in self-driving automobiles or clinical diagnostic systems, interval-bound propagation offers a systematic approach to guarantee that the outcomes generated by a model are secure and reliable under a range of input conditions.

Conclusion

Deep learning approaches have been incorporated into NLP and have offered excellent performance with various tasks. With the increase in the complexity of these models, they become vulnerable to adversarial attacks that can manipulate them. Mitigating these vulnerabilities is crucial for improving the stability and reliability of the NLP systems.

This article provided several defense approaches for adversarial attacks such as adversarial training-based approach, perturbation control-based approach, and certification-based approach. All these approaches help to improve the robustness of the NLP models against adversarial perturbations.

Reference

A Survey of Adversarial Defences and Robustness in NLP

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NLP 深度学习 对抗性攻击 模型鲁棒性 防御机制 Natural Language Processing Deep Learning Adversarial Attacks Model Robustness Defense Mechanisms
相关文章