Blog - Neural Network Console 09月25日
神经网络控制台Windows更新
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了神经网络控制台Windows的三大主要更新:利用神经网络控制台云的计算资源进行训练、支持导出到TensorFlow格式(.pb,测试版)、以及新增LIME和推理插件。这些更新提升了训练效率、扩展了模型兼容性,并增强了模型的可解释性和推理功能,使用户能够更便捷地进行神经网络项目开发。

🌐 利用神经网络控制台云的计算资源进行训练:用户现在可以从菜单中选择神经网络控制台云的训练资源,将项目和数据集自动上传到云端进行训练,并能在本地和云端同时监控训练进度。云版本支持并行运行多个训练任务,例如使用8个GPU同时运行4个训练,可利用多达32个GPU。

🔄 支持导出到TensorFlow格式(.pb,测试版):用户可通过ONNX兼容的方式,将训练好的模型导出为TensorFlow格式的冻结图(.pb),从而在更广泛的环境中使用该模型,提高了模型的跨平台兼容性。

🔍 新增LIME和推理插件:LIME插件用于可视化输入数据中哪些部分对识别结果产生影响,与已有的Grad-CAM插件类似,帮助用户理解模型决策过程;推理插件则允许用户在GUI界面上轻松对新数据进行推理,只需选择模型和输入数据即可运行,简化了推理操作流程。

We have updated Neural Network Console Windows.
In this post, we will describe the following major updates.

 

1. Training with Neural Network Console Cloud’s computational resources Before we execute training

We can now select Neural Network Console Cloud’s training resources from the menu (※1).

By executing training with cloud version’s computational resources, the project and the dataset are automatically uploaded to Neural Network Console Cloud.
Once the training begins, we can check the progress of training in the same way we do when training with local processors.
We can also check the progress of training on Neural Network Console Cloud as well.

Also, when training with cloud version’s resources, it is possible to run multiple trainings in parallel.
For example, running 4 trainings in parallel with 8 GPUs for each, we can use 32 GPUs simultaneously.

For details about training with Neural Network Console Cloud’s resources, please refer to the following description from pdf manual included in Windows version.

6.1.9 Executing neural network training on the Neural Network Console Cloud version (beta)

 

2. Export to TensorFlow format (.pb) (beta)

We can export the model trained with Neural Network Console to TensorFlow format via ONNX, which has already been compatible (※2).
To export to TensorFlow format, right-click on the list of training results and select Export –> pb (TensorFlow frozen graph) from the menu.

With this export functionality, models trained with Neural Network Console can now be executed in a wider range of environments.

 

3. Addition of LIME, Inference plugins

We introduce two of our newest plugins below.

・LIME
LIME (※3)is a method to visualize which part of the input data exerts influence on the recognition results, as in our already available plugin Grad-CAM.

LIME can be used in the following way.

To enlarge the resulting image from LIME, double-click on LIME’s resulting image displayed on EVALUATION tab.

 

・Inference
This executes inference on single data.
Using this plugin, we can now easily run inference on new data on GUI.
Inference can be run as following:

 

We will continue to improve Neural Network Console.
We are also looking forward to getting requests from the users for further addition of functionalities!

Neural Network Console Windows
https://dl.sony.com/ja/app/
 

※1
As of its release date, projects using RandomFlip layer cannot be executed properly on Neural Network Console Cloud. This issue will be handled with the updates on the cloud version.

※2
On Neural Network Console Windows version 1.60, there may be cases where export to TensorFlow format (.pb) is not properly completed. We will handle this issue in near future.

※3
“Why Should I Trust You?”: Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin
https://arxiv.org/abs/1602.04938

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络控制台 Windows更新 云计算 TensorFlow AI工具 LIME 推理插件
相关文章