Blog - Neural Network Console 09月25日
神经网络控制台更新
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了神经网络控制台Windows版的最新更新,包括自定义单元功能、预训练模型导入功能以及XAI相关插件的添加。这些更新旨在提高网络架构的复用性、简化迁移学习过程,并增强模型的可解释性。自定义单元功能允许用户将常用网络架构注册为组件,方便重复使用。预训练模型导入功能支持导入nnp、onnx和pb文件,便于进行迁移学习。XAI相关插件包括SGD Influence、Face Evaluation、LIME(batch)和LIME(tabular),用于评估输入图像对识别结果的影响、测量人脸肤色、可视化影响分类结果的关键区域,以及解释分类结果。这些更新将进一步提升用户体验和模型性能。

🔧 自定义单元功能:用户可以将其定义的网络架构注册为组件,并通过简单操作将其添加到网络中,从而轻松复用常用网络架构。

📈 预训练模型导入功能:支持导入nnp、onnx和pb文件作为单元,便于进行迁移学习,简化模型训练过程。

📊 XAI相关插件添加:包括SGD Influence、Face Evaluation、LIME(batch)和LIME(tabular),用于评估输入图像对识别结果的影响、测量人脸肤色、可视化影响分类结果的关键区域,以及解释分类结果,提升模型可解释性。

We have updated the Neural Network Console Windows today.
This post will introduce the major updates.

・ Custom unit function
・ Import as unit function of pre-trained model
・ Addition of XAI related plug-ins

 

1. Custom unit function

A function has been added that allows you to register your own defined unit as a component and add it to the network with a simple operation.

The usage of the custom unit function is as follows.

1. Edit the network structure you want to reuse as a unit and save it as a project file.

2. From the right-click menu “Register Custom Unit” in the component list, select the saved project file.

The selected project will be registered in the Custom Unit category at the bottom of the component list.

3. Add the registered custom unit to the network in the same way as adding a normal layer.

You can add the project saved in step 1 to the current network as a unit.

The custom unit function makes it easier to reuse your frequently used network architecture.

 

2. Import as Unit function of pre-trained model

A function to import pre-trained models such as nnp, onnx, and pb files as a unit has been added.

From the right-click menu on the Edit tab, select Import, “Import, nntxt, nnp, ONNX as Unit” and select the pre-trained model file.
The selected pre-trained model will be imported as a unit into the current project.

This feature makes it easier to perform transfer learning using a pre-trained model.

 

3. Addition of XAI related plugins

The following four plug-ins have been added as Explainable AI (XAI) related plug-ins.

SGD Influence
Using a method called SGD Influence [1], the influence of the input images on recognition result are evaluated. The dataset and the scores are shown in the influential order, which can be referred for data cleansing.

Face Evaluation
Measure skin color of human face in input images, calculating a score called Individual Typology Angle (ITA) [2].

LIME (batch)
Using a method called LIME [3], the areas of the input image that affect the classification result are made visible in the model, which performs image classification. LIME(batch) plug-in processes all images in the specified dataset, while LIME plug-in processes a single image.

LIME (tabular)
Using a method called LIME [3], a classification result is explained with the contribution of the features in input table data. Each feature is explained with a set of inequality and degree of contribution, which enables to interpret the classifier judgement [4].

 

We will continue to update Neural Network Console.
We look forward to getting feedbacks from the users for futher improvements!

Neural Network Console Windows
https://dl.sony.com/app/

 

[1]
S.Hara, A. Nitanday, T. Maehara
“Data Cleansing for Models Trained with SGD” (2019)

[2]
Diversity in Faces
Michele Merler, Nalini Ratha, Rogerio S. Feris, John R. Smith
https://arxiv.org/abs/1901.10436

[3]
Why Should I Trust You ?: Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin
https://arxiv.org/abs/1602.04938

[4]
Note that this plugin does not support regression model or classification model with categorical features.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络控制台 自定义单元 预训练模型 XAI插件 迁移学习
相关文章