Blog - Neural Network Console 09月25日
神经网络控制台更新,新增插件功能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

近日,神经网络控制台Windows版本进行了更新,引入了插件功能以增强后处理评估结果。用户可通过右键点击评估结果并选择插件来使用Grad-CAM、交叉表分析、参数统计和图像拼接等功能。此外,还增加了多种新层和求解器,如GELU、ReLU6等,以提升模型性能和开发效率。这些更新旨在为用户提供更强大的工具集,方便进行模型评估和优化。

🔍 插件功能:新增Grad-CAM、交叉表分析、参数统计和图像拼接插件,方便用户进行后处理评估和可视化分析。

🛠️ 新增层和求解器:引入GELU、ReLU6、HardSigmoid等新层和AdaBound、AMSBound等求解器,提升模型性能和开发效率。

📊 参数统计:提供模型参数的统计信息(最小值、最大值、均值、标准差等),帮助用户进行参数量化和模型优化。

🖼️ 图像拼接:支持将评估数据中的图像拼接为单张大图,便于进行批量图像分析和可视化展示。

🔧 自定义插件:用户可通过创建Python脚本自定义插件,并将其放置在libs/plugins文件夹中,实现个性化功能扩展。

We have updated Neural Network Console Windows today.
In this version, plug-ins are now available for post-processing evaluation results.

To use the plug-in, right-click the evaluation result of the EVALUATION tab to open a shortcut menu, and click Plugin.

The four plug-ins added this time are introduced below.

 

Grad-CAM

Grad-CAM (*1) is one of the popular methods for visualizing input data that greatly affects recognition results.
To use Grad-CAM,

    Run training and evaluation in image recognition project using Convolutional Neural NetworksSelect the evaluation image displayed on the EVALUATION tabRight-click the evaluation result of the EVALUATION tab to open a shortcut menu, and select Plugin and Grad-CAM.Specify the index of the class to be visualized in class_index (for example, 0 to 999 for 1000 class classification)

To display a larger view of the Grad-CAM result image, double-click the result image displayed on the EVALUATION tab.

 

Cross Tabulation

Perform cross-tabulation analysis the evaluation results.
For example, cross tabulation can be used to compare the accuracy of each class in a classification tasks.

Specify the variable name used for the row of the tabulation result in variable1 and the variable name used for the column in variable2.
To use correct / incorrect between the label and the estimation for the column, specify the variable name to be compared with variable2 in valuable2_eval.

 

Parameter Stats

Displays various statistics (minimum, maximum, mean, standard deviation, etc.) for model parameters.
The following is an example of using statistics of parameters.

    Check whether the parameter value is within the quantifiable range when performing parameter quantization at inferenceSet the minimum value (Delta) for quantization when performing parameter quantization at training

 

Tile Images

The images included in the evaluation data are tiled as a single image.

For example, it can be used to tile the images generated by using a method such as GAN.

Specify the number of images to be arranged in row in num_column, and the index of the first and last images in start_index and end_index.

To display a larger image of the result, Double-click the result image displayed on the EVALUATION tab.

 

You can easily add your own plug-ins by creating an executable Python script from the command line.
Please refer to the existing plug-in files in the libs/plugins folder for how to make plug-ins.
The created plug-in can be called from Neural Network Console by copying it to the libs/plugins folder.

 

In addition, several other layers and solvers have been added.

 

We will continue to improve Neural Network Console.
We look forward to hearing feedbacks from the users for further improvements!

 

Neural Network Console Windows
https://dl.sony.com/app/

※1
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, Dhruv Batra
https://arxiv.org/abs/1610.02391

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Neural Network Console 插件功能 Grad-CAM 交叉表分析 参数统计 图像拼接
相关文章