DLabs.AI 09月25日
数据与AI革新医疗决策
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

医疗行业长期面临财务困境,浪费资源高达年750亿美元。本文探讨如何通过数据与人工智能整合解决这一难题。医疗数据涵盖电子病历、纸质记录、财务交易等多元形式,但处理难度大且涉及敏感信息。预测分析技术通过分析历史数据预测未来风险,如疾病发展、患者反应及再入院可能,已在降低成本、优化管理、提升安全等方面展现显著成效。全球医疗数据分析市场预计年增25.7%,达到859亿美元。实际案例显示,医院应用该技术后可显著减少危重事件和死亡率。

📊 医疗数据涵盖电子病历、纸质记录、财务交易等多种形式,来源多元但处理复杂且涉及敏感信息,需要特殊保护措施。

🔮 预测分析通过分析历史数据预测未来风险,如疾病发展、患者反应及再入院可能,帮助医疗提供者提前干预,降低死亡率。

💡 该技术已在降低成本(如减少预约爽约)、优化管理(如自动化行政流程)、提升安全(如预防网络攻击)等方面展现显著成效。

📈 全球医疗数据分析市场预计年增25.7%,达到859亿美元,反映行业对数据驱动决策的依赖日益增强。

🏥 实际案例显示,医院应用该技术后可减少35%的危重事件和86%的心脏骤停,以及53%的败血症死亡率,证明其临床价值。

The healthcare industry has been grappling with financial constraints for years, prompting companies to seek cost-saving measures. Despite these efforts, data reveals substantial wasteful spending. According to the Institute of Medicine, the U.S. healthcare system allocates nearly a third of its resources—amounting to $750 billion annually—on unnecessary services and inefficient care.

How can we address one of the most significant challenges facing the healthcare industry? In this article, we will explore how the integration of data and artificial intelligence can provide effective solutions.

Healthcare Data: The Power of Information

Before we move on to AI, let’s start with the key term: healthcare data. The healthcare industry generates an immense amount of data, and its volume is rapidly increasing. An IDC study estimates that the volume of health data created annually surpassed 2,000 exabytes in 2020 and is projected to grow by 48% each year.

What Exactly is Healthcare Data?

Healthcare data encompasses a wide array of forms and sources. One of the most prominent forms is electronic health records (EHRs), which include patient charts, medical histories, treatment plans, lab and test results, and radiology images. However, healthcare data is not limited to EHRs. It also includes, among others:

As technology advances, new sources of healthcare data continue to emerge. Wearable devices like health trackers and fitness monitors generate new health-related data. Additionally, the rise of virtual and remote care services, such as telehealth and remote patient monitoring, contribute to the growing volume of digital health data. Even AI-based assistants, such as our GPT-based chatbot called SugarAssist (it offers tailored guidance on blood sugar management, physical activity, and emotional well-being) are sources of medical data that can make a difference.

Complexity of Healthcare Data

When discussing healthcare data, it’s essential to address the potential difficulties associated with processing it. These challenges arise from the diversity of data types and sources, including paper records and data in legacy systems. Healthcare data encompasses both structured data, such as information related to health systems’ financial transactions, and unstructured data, including emails, call center records, and other non-standardized formats.

Another critical aspect is sensitive patient data, which requires special protection measures to ensure its proper processing and security.

We will delve deeper into the topics of data preparation and security in next articles. Subscribe to our newsletter so you don’t miss out on these important issues.

Predictive Analytics: A Game-Changer in Healthcare

And what relationship does the data have to the aforementioned problem of inappropriate business decisions? For most problems associated with unpredicted risks, unnecessary services, and inefficient care, data is the key. This brings us to another important term: predictive analytics.

What is Predictive Analytics?

Predictive analytics is a powerful tool where computer programs analyze past events, occurrences, or patterns to forecast the future logically. This discipline is rapidly growing within the healthcare industry, providing solutions to many problems associated with unpredicted risks, unnecessary services, and inefficient care.

Data is crucial in helping healthcare providers prevent rapid health deterioration and intervene when it matters most. It can anticipate future outcomes and enable informed decision-making.

Predictive analytics can help practitioners answer critical questions, such as:

These insights demonstrate the transformative potential of predictive analytics in healthcare, enabling providers to make better-informed decisions and improve patient outcomes.

Healthcare Data Analytics Market Worth

The global healthcare analytics market, in terms of revenue, was estimated to be worth $27.4 billion in 2022 and is projected to reach $85.9 billion by 2027, growing at a CAGR of 25.7% from 2022 to 2027.

This substantial growth highlights the increasing reliance on data-driven insights to enhance patient care and operational efficiency.

Several factors drive this market expansion, including the increased adoption of healthcare analytics solutions and services, the growing importance of analytics in healthcare, and the increased use of technologically advanced tools. 

The Impact of Predictive Analytics in Healthcare

What are the outcomes? Predictive analytics has demonstrated significant promise in improving healthcare results. By utilizing extensive data for numerous variables, risk prediction has become a crucial aspect of modern healthcare. At the individual patient level, AI-powered risk assessments allow for early intervention in severe and expensive diseases. Data indicates that this approach can decrease the mortality rate from 45% to 24% and reduce instances of cardiac arrest by 80%.

On a broader scale, big data and predictive analytics can anticipate epidemics, offering essential insights that help prevent widespread outbreaks and manage public health more efficiently. During the initial stages of the pandemic, the healthcare industry struggled without effective forecasting tools. This experience highlighted the need for a predictive system to navigate future uncertainties.

Improved foresight helps healthcare organizations prepare for changes in the insurance market, the economy, service utilization, consumer behavior, and future infectious disease waves. Predictive analytics provides a valuable perspective to manage these uncertainties, ensuring that the healthcare sector is better prepared for upcoming challenges. By adopting predictive analytics, healthcare providers can enhance their readiness and responsiveness, leading to better patient outcomes and more efficient healthcare systems.

5 Key Benefits of Predictive Analytics in Healthcare

Predictive analytics offers numerous benefits to healthcare leaders, enhancing both patient care and operational efficiency. Here are some key advantages:

    Reducing Costs: By predicting appointment no-shows , healthcare providers can significantly cut costs. Predictive analytics helps identify patients at risk of missing appointments or being readmitted, enabling timely interventions.Streamlining Administrative Tasks: Predictive analytics can expedite administrative processes such as discharge procedures and insurance claims submission. By automating these tasks, healthcare providers can reduce wait times and improve overall efficiency.Enhancing Cybersecurity: Predictive analytics can prevent ransom and other cyberattacks by analyzing ongoing transactions and assigning risk scores. This proactive approach helps in identifying potential threats and mitigating them before they cause harm.Preparing for Population Health Trends: Healthcare providers can use predictive analytics to forecast upcoming population health trends. This enables them to proactively prepare for changes in patient demographics and disease prevalence, ensuring they are better equipped to meet future healthcare demands.Attracting New Clients: By leveraging predictive analytics for personalized campaigns, healthcare companies can create tailored marketing strategies based on data insights to help in reaching the right audience and improving their engagement.

Real-World Examples of Predictive Analytics in Healthcare

Reducing Critical Events

There are numerous remarkable examples of using predictive analytics in healthcare. One example is Ysbyty Gwynedd hospital, which experienced a 35% decrease in critical events and an 86% reduction in cardiac arrests after implementing a predictive analytics solution.

Decreasing Sepsis Mortality

Another notable example is Huntsville Hospital in Alabama, which used predictive analytics in tandem with clinical decision support (CDS) tools to decrease sepsis mortality among younger, older, and chronically ill patients by as much as 53%.

Predicting Suicidal Ideation

Additionally, a study conducted on Korean adults demonstrated that machine learning algorithms could predict more than 80% of suicidal ideation and attempts based on various mental and socioeconomic characteristics. 

Early Detection of Ovarian Cancer

The Georgia Tech Integrated Cancer Research Center has made a significant leap in early ovarian cancer detection. By combining machine learning with blood metabolite analysis, they developed a test with a remarkable 93% accuracy for detecting ovarian cancer. This method offers a personalized, probabilistic approach that provides a nuanced and precise probability of disease presence. 

Unlock the Power of AI Combined with Healthcare Data

Health data combined with AI has tremendous potential, as shown by the examples in this article. Solutions like predictive analytics can revolutionize patient care and operational efficiency in healthcare.

If you want to learn how to successfully implement AI technology in your organization and avoid the associated risks, download our ebook “How to Implement AI in Your Company.” Transform your operations and harness the power of AI today

Artykuł Harnessing Data and AI: Revolutionizing Decision-Making in Healthcare pochodzi z serwisu DLabs.AI.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

医疗数据 人工智能 预测分析 医疗成本 患者安全
相关文章