MIT News - Computer Science and Artificial Intelligence Laboratory 09月25日
AI辅助医疗影像诊断
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

医疗影像中的模糊性给临床医生带来挑战,例如胸片中的胸腔积液可能看起来像肺浸润。AI模型可通过识别细微细节提高诊断效率,但单次预测可能包含多种可能性。MIT研究人员开发了一种改进方法,通过测试时增强技术(TTA)减少预测集大小达30%,同时提高可靠性,帮助医生更高效地确定诊断。该方法适用于多种分类任务,如动物物种识别,提供更精确的选项。

🔬AI模型在医疗影像分析中通过识别细微细节辅助医生,提高诊断效率,但单次预测可能包含多种可能性。

📊MIT研究人员开发了一种改进方法,通过测试时增强技术(TTA)减少预测集大小达30%,同时提高可靠性。

🏥该方法适用于多种分类任务,如动物物种识别,提供更精确的选项,帮助医生更高效地确定诊断。

🔄TTA通过创建图像的多个增强版本并聚合预测,提高了预测的准确性和鲁棒性。

💡研究结果表明,在保持概率保证的同时,TTA可以显著减少预测集大小,而提高的准确性可以弥补损失的数据成本。

The ambiguity in medical imaging can present major challenges for clinicians who are trying to identify disease. For instance, in a chest X-ray, pleural effusion, an abnormal buildup of fluid in the lungs, can look very much like pulmonary infiltrates, which are accumulations of pus or blood.

An artificial intelligence model could assist the clinician in X-ray analysis by helping to identify subtle details and boosting the efficiency of the diagnosis process. But because so many possible conditions could be present in one image, the clinician would likely want to consider a set of possibilities, rather than only having one AI prediction to evaluate.

One promising way to produce a set of possibilities, called conformal classification, is convenient because it can be readily implemented on top of an existing machine-learning model. However, it can produce sets that are impractically large. 

MIT researchers have now developed a simple and effective improvement that can reduce the size of prediction sets by up to 30 percent while also making predictions more reliable.

Having a smaller prediction set may help a clinician zero in on the right diagnosis more efficiently, which could improve and streamline treatment for patients. This method could be useful across a range of classification tasks — say, for identifying the species of an animal in an image from a wildlife park — as it provides a smaller but more accurate set of options.

“With fewer classes to consider, the sets of predictions are naturally more informative in that you are choosing between fewer options. In a sense, you are not really sacrificing anything in terms of accuracy for something that is more informative,” says Divya Shanmugam PhD ’24, a postdoc at Cornell Tech who conducted this research while she was an MIT graduate student.

Shanmugam is joined on the paper by Helen Lu ’24; Swami Sankaranarayanan, a former MIT postdoc who is now a research scientist at Lilia Biosciences; and senior author John Guttag, the Dugald C. Jackson Professor of Computer Science and Electrical Engineering at MIT and a member of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). The research will be presented at the Conference on Computer Vision and Pattern Recognition in June.

Prediction guarantees

AI assistants deployed for high-stakes tasks, like classifying diseases in medical images, are typically designed to produce a probability score along with each prediction so a user can gauge the model’s confidence. For instance, a model might predict that there is a 20 percent chance an image corresponds to a particular diagnosis, like pleurisy.

But it is difficult to trust a model’s predicted confidence because much prior research has shown that these probabilities can be inaccurate. With conformal classification, the model’s prediction is replaced by a set of the most probable diagnoses along with a guarantee that the correct diagnosis is somewhere in the set.

But the inherent uncertainty in AI predictions often causes the model to output sets that are far too large to be useful.

For instance, if a model is classifying an animal in an image as one of 10,000 potential species, it might output a set of 200 predictions so it can offer a strong guarantee.

“That is quite a few classes for someone to sift through to figure out what the right class is,” Shanmugam says.

The technique can also be unreliable because tiny changes to inputs, like slightly rotating an image, can yield entirely different sets of predictions.

To make conformal classification more useful, the researchers applied a technique developed to improve the accuracy of computer vision models called test-time augmentation (TTA).

TTA creates multiple augmentations of a single image in a dataset, perhaps by cropping the image, flipping it, zooming in, etc. Then it applies a computer vision model to each version of the same image and aggregates its predictions.

“In this way, you get multiple predictions from a single example. Aggregating predictions in this way improves predictions in terms of accuracy and robustness,” Shanmugam explains.

Maximizing accuracy

To apply TTA, the researchers hold out some labeled image data used for the conformal classification process. They learn to aggregate the augmentations on these held-out data, automatically augmenting the images in a way that maximizes the accuracy of the underlying model’s predictions.

Then they run conformal classification on the model’s new, TTA-transformed predictions. The conformal classifier outputs a smaller set of probable predictions for the same confidence guarantee.

“Combining test-time augmentation with conformal prediction is simple to implement, effective in practice, and requires no model retraining,” Shanmugam says.

Compared to prior work in conformal prediction across several standard image classification benchmarks, their TTA-augmented method reduced prediction set sizes across experiments, from 10 to 30 percent.

Importantly, the technique achieves this reduction in prediction set size while maintaining the probability guarantee.

The researchers also found that, even though they are sacrificing some labeled data that would normally be used for the conformal classification procedure, TTA boosts accuracy enough to outweigh the cost of losing those data.

“It raises interesting questions about how we used labeled data after model training. The allocation of labeled data between different post-training steps is an important direction for future work,” Shanmugam says.

In the future, the researchers want to validate the effectiveness of such an approach in the context of models that classify text instead of images. To further improve the work, the researchers are also considering ways to reduce the amount of computation required for TTA.

This research is funded, in part, by the Wistron Corporation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI辅助医疗 测试时增强 预测集优化 医学影像诊断 人工智能研究
相关文章