cs.AI updates on arXiv.org 09月25日
信息差距驱动的知识蒸馏与对话生成
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种信息差距驱动的知识蒸馏方法,通过LLM生成答案,识别信息差距并构建后续问题,显著提升小型对话模型的多样性和信息量。

arXiv:2502.17715v2 Announce Type: replace-cross Abstract: Generating diverse follow-up questions that uncover missing information remains challenging for conversational agents, particularly when they run on small, locally hosted models. To address this, we develop an information-gap-driven knowledge distillation pipeline in which a teacher LLM generates a comprehensive answer, contrasts it with the initial answer to identify information gaps, and formulates gap-bridging follow-up questions. Using this pipeline, we augment the existing FollowupQG dataset tenfold. We then fine-tune smaller student models on the augmented dataset to distill the teacher's knowledge. Experiments with selected teacher-student model pairs show that fine-tuned students achieve significantly higher informativeness and diversity than variations trained on the original dataset. These findings indicate that our pipeline, which mirrors the human cognitive process of information seeking, provides an efficient distillation channel from state-of-the-art LLMs to smaller models, enabling resource-constrained conversational systems to generate more diverse and informative follow-up questions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

知识蒸馏 对话生成 信息差距 LLM 对话系统
相关文章