cs.AI updates on arXiv.org 09月25日
解码器Transformer图推理机制解析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了基于Transformer的LLM在图推理任务上的表现,通过电路追踪框架解析了其内部机制,揭示了图推理中的两个核心机制:token merging和structural memorization,并分析了这些机制如何受图密度和模型大小的影响。

arXiv:2509.20336v1 Announce Type: cross Abstract: Transformer-based LLMs demonstrate strong performance on graph reasoning tasks, yet their internal mechanisms remain underexplored. To uncover these reasoning process mechanisms in a fundamental and unified view, we set the basic decoder-only transformers and explain them using the circuit-tracer framework. Through this lens, we visualize reasoning traces and identify two core mechanisms in graph reasoning: token merging and structural memorization, which underlie both path reasoning and substructure extraction tasks. We further quantify these behaviors and analyze how they are influenced by graph density and model size. Our study provides a unified interpretability framework for understanding structural reasoning in decoder-only Transformers.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Transformer 图推理 解码器 机制分析 电路追踪框架
相关文章