cs.AI updates on arXiv.org 09月25日
机器翻译中准确性与流畅性权衡研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了机器翻译中准确性与流畅性之间的权衡,分析了当前评价指标的倾向性,并提出了合成翻译系统的方法以控制元评估中的偏差。

arXiv:2509.20287v1 Announce Type: cross Abstract: We investigate the tradeoff between adequacy and fluency in machine translation. We show the severity of this tradeoff at the evaluation level and analyze where popular metrics fall within it. Essentially, current metrics generally lean toward adequacy, meaning that their scores correlate more strongly with the adequacy of translations than with fluency. More importantly, we find that this tradeoff also persists at the meta-evaluation level, and that the standard WMT meta-evaluation favors adequacy-oriented metrics over fluency-oriented ones. We show that this bias is partially attributed to the composition of the systems included in the meta-evaluation datasets. To control this bias, we propose a method that synthesizes translation systems in meta-evaluation. Our findings highlight the importance of understanding this tradeoff in meta-evaluation and its impact on metric rankings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器翻译 准确性 流畅性 评价指标 元评估
相关文章