cs.AI updates on arXiv.org 09月25日
VCD-RNK:高效Verilog代码重排序模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出VCD-RNK,一种针对Verilog代码重排序的判别模型,通过跨代码语义分析、测试用例生成和功能正确性评估三个维度,融合专家知识,避免计算密集型测试执行,提高LLMs在Verilog生成中的性能。

arXiv:2509.20215v1 Announce Type: cross Abstract: LLMs face significant challenges in Verilog generation due to limited domain-specific knowledge. While sampling techniques improve pass@k metrics, hardware engineers need one trustworthy solution rather than uncertain candidates. To bridge this gap, we formulate it as a semantic alignment problem between requirements and Verilog implementations, and propose VCD-RNK, a discriminator model tailored for efficient Verilog code reranking. Specifically, VCD-RNKincorporates Verilog-specific reasoning by distilling expert knowledge across three dimensions: code semantic analysis, test case generation, and functional correctness assessment. By explicitly simulating the above reasoning processes during inference, VCD-RNK effectively avoids computationally intensive test execution in existing methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Verilog代码重排序 LLMs 代码生成 专家知识 模型
相关文章