cs.AI updates on arXiv.org 09月25日
U-Mamba2-SSL:基于半监督学习的牙科CBCT图像分割方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为U-Mamba2-SSL的半监督学习框架,用于提高锥束CT(CBCT)图像中牙齿和牙髓分割的准确性,显著缩短了处理时间。

arXiv:2509.20154v1 Announce Type: cross Abstract: Accurate segmentation of teeth and pulp in Cone-Beam Computed Tomography (CBCT) is vital for clinical applications like treatment planning and diagnosis. However, this process requires extensive expertise and is exceptionally time-consuming, highlighting the critical need for automated algorithms that can effectively utilize unlabeled data. In this paper, we propose U-Mamba2-SSL, a novel semi-supervised learning framework that builds on the U-Mamba2 model and employs a multi-stage training strategy. The framework first pre-trains U-Mamba2 in a self-supervised manner using a disruptive autoencoder. It then leverages unlabeled data through consistency regularization, where we introduce input and feature perturbations to ensure stable model outputs. Finally, a pseudo-labeling strategy is implemented with a reduced loss weighting to minimize the impact of potential errors. U-Mamba2-SSL achieved an average score of 0.872 and a DSC of 0.969 on the validation dataset, demonstrating the superior performance of our approach. The code is available at https://github.com/zhiqin1998/UMamba2.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

半监督学习 牙科图像分割 CBCT U-Mamba2-SSL 自动编码器
相关文章