cs.AI updates on arXiv.org 09月25日
LLM-Filter:利用大语言模型进行动态系统状态估计
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为LLM-Filter的通用滤波框架,利用大语言模型进行状态估计,通过文本原型嵌入噪声观测值,在经典动态系统实验中表现出色,具有优异的泛化能力和扩展性。

arXiv:2509.20051v1 Announce Type: cross Abstract: Estimating hidden states in dynamical systems, also known as optimal filtering, is a long-standing problem in various fields of science and engineering. In this paper, we introduce a general filtering framework, \textbf{LLM-Filter}, which leverages large language models (LLMs) for state estimation by embedding noisy observations with text prototypes. In various experiments for classical dynamical systems, we find that first, state estimation can significantly benefit from the reasoning knowledge embedded in pre-trained LLMs. By achieving proper modality alignment with the frozen LLM, LLM-Filter outperforms the state-of-the-art learning-based approaches. Second, we carefully design the prompt structure, System-as-Prompt (SaP), incorporating task instructions that enable the LLM to understand the estimation tasks. Guided by these prompts, LLM-Filter exhibits exceptional generalization, capable of performing filtering tasks accurately in changed or even unseen environments. We further observe a scaling-law behavior in LLM-Filter, where accuracy improves with larger model sizes and longer training times. These findings make LLM-Filter a promising foundation model of filtering.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大语言模型 状态估计 动态系统 滤波框架 LLM-Filter
相关文章