cs.AI updates on arXiv.org 09月25日
P-KANs:优化Kolmogorov-Arnold网络,提升科学机器学习
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为Projective Kolmogorov-Arnold Networks (P-KANs)的新型训练框架,旨在优化Kolmogorov-Arnold网络,提升科学机器学习的性能。P-KANs通过熵最小化技术引导边缘功能发现,减少参数数量,增强模型鲁棒性,并在纤维放置预测等领域表现出色。

arXiv:2509.20049v1 Announce Type: cross Abstract: Kolmogorov-Arnold Networks (KANs) relocate learnable nonlinearities from nodes to edges, demonstrating remarkable capabilities in scientific machine learning and interpretable modeling. However, current KAN implementations suffer from fundamental inefficiencies due to redundancy in high-dimensional spline parameter spaces, where numerous distinct parameterisations yield functionally equivalent behaviors. This redundancy manifests as a "nuisance space" in the model's Jacobian, leading to susceptibility to overfitting and poor generalization. We introduce Projective Kolmogorov-Arnold Networks (P-KANs), a novel training framework that guides edge function discovery towards interpretable functional representations through entropy-minimisation techniques from signal analysis and sparse dictionary learning. Rather than constraining functions to predetermined spaces, our approach maintains spline space flexibility while introducing "gravitational" terms that encourage convergence towards optimal functional representations. Our key insight recognizes that optimal representations can be identified through entropy analysis of projection coefficients, compressing edge functions to lower-parameter projective spaces (Fourier, Chebyshev, Bessel). P-KANs demonstrate superior performance across multiple domains, achieving up to 80% parameter reduction while maintaining representational capacity, significantly improved robustness to noise compared to standard KANs, and successful application to industrial automated fiber placement prediction. Our approach enables automatic discovery of mixed functional representations where different edges converge to different optimal spaces, providing both compression benefits and enhanced interpretability for scientific machine learning applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

科学机器学习 Kolmogorov-Arnold网络 P-KANs 熵最小化 机器学习优化
相关文章