cs.AI updates on arXiv.org 09月25日
强化学习探索:LLM与VLM在零样本场景中的挑战与潜力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了强化学习中探索的挑战,特别是稀疏奖励场景下,基础模型作为零样本探索代理的能力。研究发现,虽然视觉语言模型能从视觉输入中推断高级目标,但在精确的低级控制上存在‘知行差距’。通过控制实验,验证了VLM引导能显著提高早期样本效率。

arXiv:2509.19924v1 Announce Type: cross Abstract: Exploration in reinforcement learning (RL) remains challenging, particularly in sparse-reward settings. While foundation models possess strong semantic priors, their capabilities as zero-shot exploration agents in classic RL benchmarks are not well understood. We benchmark LLMs and VLMs on multi-armed bandits, Gridworlds, and sparse-reward Atari to test zero-shot exploration. Our investigation reveals a key limitation: while VLMs can infer high-level objectives from visual input, they consistently fail at precise low-level control: the "knowing-doing gap". To analyze a potential bridge for this gap, we investigate a simple on-policy hybrid framework in a controlled, best-case scenario. Our results in this idealized setting show that VLM guidance can significantly improve early-stage sample efficiency, providing a clear analysis of the potential and constraints of using foundation models to guide exploration rather than for end-to-end control.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 探索 基础模型 视觉语言模型 样本效率
相关文章