cs.AI updates on arXiv.org 09月25日
语义增强边缘云协作检测新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于自适应引导的语义增强边缘云协作对象检测方法,利用多模态大语言模型(MLLM)实现低光和遮挡场景下的检测精度与效率的有效平衡,实验表明,该方法可显著降低复杂场景下的延迟和计算成本。

arXiv:2509.19875v1 Announce Type: cross Abstract: Traditional object detection methods face performance degradation challenges in complex scenarios such as low-light conditions and heavy occlusions due to a lack of high-level semantic understanding. To address this, this paper proposes an adaptive guidance-based semantic enhancement edge-cloud collaborative object detection method leveraging Multimodal Large Language Models (MLLM), achieving an effective balance between accuracy and efficiency. Specifically, the method first employs instruction fine-tuning to enable the MLLM to generate structured scene descriptions. It then designs an adaptive mapping mechanism that dynamically converts semantic information into parameter adjustment signals for edge detectors, achieving real-time semantic enhancement. Within an edge-cloud collaborative inference framework, the system automatically selects between invoking cloud-based semantic guidance or directly outputting edge detection results based on confidence scores. Experiments demonstrate that the proposed method effectively enhances detection accuracy and efficiency in complex scenes. Specifically, it can reduce latency by over 79% and computational cost by 70% in low-light and highly occluded scenes while maintaining accuracy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

对象检测 语义增强 边缘云协作 MLLM 性能提升
相关文章