cs.AI updates on arXiv.org 09月25日
基于相似性的量子算符构建:GQE新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于分子系统相似性的量子算符构建方法,应用于Generative Quantum Eigensolver框架,有效降低分子基态能量计算的复杂度。

arXiv:2509.19715v1 Announce Type: cross Abstract: Given the inherent limitations of traditional Variational Quantum Eigensolver(VQE) algorithms, the integration of deep generative models into hybrid quantum-classical frameworks, specifically the Generative Quantum Eigensolver(GQE), represents a promising innovative approach. However, taking the Unitary Coupled Cluster with Singles and Doubles(UCCSD) ansatz which is widely used in quantum chemistry as an example, different molecular systems require constructions of distinct quantum operators. Considering the similarity of different molecules, the construction of quantum operators utilizing the similarity can reduce the computational cost significantly. Inspired by the SMILES representation method in computational chemistry, we developed a text-based representation approach for UCCSD quantum operators by leveraging the inherent representational similarities between different molecular systems. This framework explores text pattern similarities in quantum operators and employs text similarity metrics to establish a transfer learning framework. Our approach with a naive baseline setting demonstrates knowledge transfer between different molecular systems for ground-state energy calculations within the GQE paradigm. This discovery offers significant benefits for hybrid quantum-classical computation of molecular ground-state energies, substantially reducing computational resource requirements.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子算符 GQE 分子系统 相似性 计算效率
相关文章