cs.AI updates on arXiv.org 09月25日
X-MultiTask:个性化手术决策新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为X-MultiTask的多任务元学习框架,用于个性化治疗效应的估计,并通过引入逆概率加权增强了因果有效性,在脊柱融合和脊柱侧弯校正等高风险手术中展现了卓越性能。

arXiv:2509.19705v1 Announce Type: cross Abstract: Surgical decision-making is complex and requires understanding causal relationships between patient characteristics, interventions, and outcomes. In high-stakes settings like spinal fusion or scoliosis correction, accurate estimation of individualized treatment effects (ITEs) remains limited due to the reliance on traditional statistical methods that struggle with complex, heterogeneous data. In this study, we develop a multi-task meta-learning framework, X-MultiTask, for ITE estimation that models each surgical decision (e.g., anterior vs. posterior approach, surgery vs. no surgery) as a distinct task while learning shared representations across tasks. To strengthen causal validity, we incorporate the inverse probability weighting (IPW) into the training objective. We evaluate our approach on two datasets: (1) a public spinal fusion dataset (1,017 patients) to assess the effect of anterior vs. posterior approaches on complication severity; and (2) a private AIS dataset (368 patients) to analyze the impact of posterior spinal fusion (PSF) vs. non-surgical management on patient-reported outcomes (PROs). Our model achieves the highest average AUC (0.84) in the anterior group and maintains competitive performance in the posterior group (0.77). It outperforms baselines in treatment effect estimation with the lowest overall $\epsilon{\text{NN-PEHE}}$ (0.2778) and $\epsilon{\text{ATE}}$ (0.0763). Similarly, when predicting PROs in AIS, X-MultiTask consistently shows superior performance across all domains, with $\epsilon{\text{NN-PEHE}}$ = 0.2551 and $\epsilon{\text{ATE}}$ = 0.0902. By providing robust, patient-specific causal estimates, X-MultiTask offers a powerful tool to advance personalized surgical care and improve patient outcomes. The code is available at https://github.com/Wizaaard/X-MultiTask.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多任务元学习 个性化治疗 因果推断 脊柱融合 手术决策
相关文章