cs.AI updates on arXiv.org 09月25日
跨域融合:基于扩散模型的阻抗学习框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种结合信息域和能量域的扩散模型阻抗学习框架,通过Transformer模型和SLERP算法,实现了物理交互中的轨迹生成和阻抗控制,并在实际场景中取得了优异的性能。

arXiv:2509.19696v1 Announce Type: cross Abstract: Learning methods excel at motion generation in the information domain but are not primarily designed for physical interaction in the energy domain. Impedance Control shapes physical interaction but requires task-aware tuning by selecting feasible impedance parameters. We present Diffusion-Based Impedance Learning, a framework that combines both domains. A Transformer-based Diffusion Model with cross-attention to external wrenches reconstructs a simulated Zero-Force Trajectory (sZFT). This captures both translational and rotational task-space behavior. For rotations, we introduce a novel SLERP-based quaternion noise scheduler that ensures geometric consistency. The reconstructed sZFT is then passed to an energy-based estimator that updates stiffness and damping parameters. A directional rule is applied that reduces impedance along non task axes while preserving rigidity along task directions. Training data were collected for a parkour scenario and robotic-assisted therapy tasks using teleoperation with Apple Vision Pro. With only tens of thousands of samples, the model achieved sub-millimeter positional accuracy and sub-degree rotational accuracy. Its compact model size enabled real-time torque control and autonomous stiffness adaptation on a KUKA LBR iiwa robot. The controller achieved smooth parkour traversal within force and velocity limits and 30/30 success rates for cylindrical, square, and star peg insertions without any peg-specific demonstrations in the training data set. All code for the Transformer-based Diffusion Model, the robot controller, and the Apple Vision Pro telemanipulation framework is publicly available. These results mark an important step towards Physical AI, fusing model-based control for physical interaction with learning-based methods for trajectory generation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

扩散模型 阻抗学习 物理交互 Transformer SLERP
相关文章