cs.AI updates on arXiv.org 09月25日 13:44
深度学习模型学习机制研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文采用受力分析灵感,深入研究深度学习模型的学习过程,分析训练示例间的相互影响,提出相似度和更新力度两个维度,解析模型在不同系统中的行为,并应用于改进模型训练策略。

arXiv:2509.19554v1 Announce Type: cross Abstract: This thesis explores how deep learning models learn over time, using ideas inspired by force analysis. Specifically, we zoom in on the model's training procedure to see how one training example affects another during learning, like analyzing how forces move objects. We break this influence into two parts: how similar the two examples are, and how strong the updating force is. This framework helps us understand a wide range of the model's behaviors in different real systems. For example, it explains why certain examples have non-trivial learning paths, why (and why not) some LLM finetuning methods work, and why simpler, more structured patterns tend to be learned more easily. We apply this approach to various learning tasks and uncover new strategies for improving model training. While the method is still developing, it offers a new way to interpret models' behaviors systematically.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 学习机制 模型训练 受力分析 行为解析
相关文章