cs.AI updates on arXiv.org 09月25日 13:43
社交媒体科学声明与原文献链接方法研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了将社交媒体上的隐含科学声明与原文献链接的方法。通过优化稀疏检索和神经重排序,实现了高效的事实核查与学术讨论。

arXiv:2509.19509v1 Announce Type: cross Abstract: Linking implicit scientific claims made on social media to their original publications is crucial for evidence-based fact-checking and scholarly discourse, yet it is hindered by lexical sparsity, very short queries, and domain-specific language. Team AIRwaves ranked second in Subtask 4b of the CLEF-2025 CheckThat! Lab with an evidence-retrieval approach that markedly outperforms the competition baseline. The optimized sparse-retrieval baseline(BM25) achieves MRR@5 = 0.5025 on the gold label blind test set. To surpass this baseline, a two-stage retrieval pipeline is introduced: (i) a first stage that uses a dual encoder based on E5-large, fine-tuned using in-batch and mined hard negatives and enhanced through chunked tokenization and rich document metadata; and (ii) a neural re-ranking stage using a SciBERT cross-encoder. Replacing purely lexical matching with neural representations lifts performance to MRR@5 = 0.6174, and the complete pipeline further improves to MRR@5 = 0.6828. The findings demonstrate that coupling dense retrieval with neural re-rankers delivers a powerful and efficient solution for tweet-to-study matching and provides a practical blueprint for future evidence-retrieval pipelines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

社交媒体 科学声明 原文献链接 事实核查 学术讨论
相关文章