cs.AI updates on arXiv.org 09月25日 13:39
AUWave:基于深度学习的高分辨率波浪高度场重建
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出AUWave,一种融合序列编码器和多尺度U-Net的深度学习框架,用于从稀疏浮标观测中重建高分辨率区域波浪高度场。实验表明,AUWave在数据丰富的配置下优于基线模型,为海洋监测和风险评估提供了一种有效方法。

arXiv:2509.19384v1 Announce Type: cross Abstract: Reconstructing high-resolution regional significant wave height fields from sparse and uneven buoy observations remains a core challenge for ocean monitoring and risk-aware operations. We introduce AUWave, a hybrid deep learning framework that fuses a station-wise sequence encoder (MLP) with a multi-scale U-Net enhanced by a bottleneck self-attention layer to recover 32$\times$32 regional SWH fields. A systematic Bayesian hyperparameter search with Optuna identifies the learning rate as the dominant driver of generalization, followed by the scheduler decay and the latent dimension. Using NDBC buoy observations and ERA5 reanalysis over the Hawaii region, AUWave attains a minimum validation loss of 0.043285 and a slightly right-skewed RMSE distribution. Spatial errors are lowest near observation sites and increase with distance, reflecting identifiability limits under sparse sampling. Sensitivity experiments show that AUWave consistently outperforms a representative baseline in data-richer configurations, while the baseline is only marginally competitive in the most underdetermined single-buoy cases. The architecture's multi-scale and attention components translate into accuracy gains when minimal but non-trivial spatial anchoring is available. Error maps and buoy ablations reveal key anchor stations whose removal disproportionately degrades performance, offering actionable guidance for network design. AUWave provides a scalable pathway for gap filling, high-resolution priors for data assimilation, and contingency reconstruction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 波浪高度场 海洋监测 风险评估
相关文章