cs.AI updates on arXiv.org 09月25日
LLMs不确定性表达与ABC方法提升
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出基于ABC方法的LLMs不确定性表达,通过将LLMs视为随机模拟器,对预测概率进行后验分布推断,并在临床诊断数据集上验证了方法的有效性。

arXiv:2509.19375v1 Announce Type: cross Abstract: Despite their widespread applications, Large Language Models (LLMs) often struggle to express uncertainty, posing a challenge for reliable deployment in high stakes and safety critical domains like clinical diagnostics. Existing standard baseline methods such as model logits and elicited probabilities produce overconfident and poorly calibrated estimates. In this work, we propose Approximate Bayesian Computation (ABC), a likelihood-free Bayesian inference, based approach that treats LLMs as a stochastic simulator to infer posterior distributions over predictive probabilities. We evaluate our ABC approach on two clinically relevant benchmarks: a synthetic oral lesion diagnosis dataset and the publicly available GretelAI symptom-to-diagnosis dataset. Compared to standard baselines, our approach improves accuracy by up to 46.9\%, reduces Brier scores by 74.4\%, and enhances calibration as measured by Expected Calibration Error (ECE) and predictive entropy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 不确定性表达 ABC方法 临床诊断 后验分布
相关文章