cs.AI updates on arXiv.org 09月25日
TriSPrompt:不完全模态数据中的谣言检测新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为TriSPrompt的分层软提示模型,用于在多模态数据中检测谣言。该模型通过整合三种提示,包括模态感知提示、模态缺失提示和相互视角提示,有效处理了不完全模态数据中的谣言检测问题,并在三个真实世界基准测试中实现了超过13%的准确率提升。

arXiv:2509.19352v1 Announce Type: cross Abstract: The widespread presence of incomplete modalities in multimodal data poses a significant challenge to achieving accurate rumor detection. Existing multimodal rumor detection methods primarily focus on learning joint modality representations from \emph{complete} multimodal training data, rendering them ineffective in addressing the common occurrence of \emph{missing modalities} in real-world scenarios. In this paper, we propose a hierarchical soft prompt model \textsf{TriSPrompt}, which integrates three types of prompts, \textit{i.e.}, \emph{modality-aware} (MA) prompt, \emph{modality-missing} (MM) prompt, and \emph{mutual-views} (MV) prompt, to effectively detect rumors in incomplete multimodal data. The MA prompt captures both heterogeneous information from specific modalities and homogeneous features from available data, aiding in modality recovery. The MM prompt models missing states in incomplete data, enhancing the model's adaptability to missing information. The MV prompt learns relationships between subjective (\textit{i.e.}, text and image) and objective (\textit{i.e.}, comments) perspectives, effectively detecting rumors. Extensive experiments on three real-world benchmarks demonstrate that \textsf{TriSPrompt} achieves an accuracy gain of over 13\% compared to state-of-the-art methods. The codes and datasets are available at https: //anonymous.4open.science/r/code-3E88.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

谣言检测 多模态数据 TriSPrompt 模态感知 准确率提升
相关文章