cs.AI updates on arXiv.org 09月25日
MEGP:多种群集成遗传编程提升高维特征空间分类
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为MEGP的多种群集成遗传编程框架,通过结合协同进化与多视图学习,解决高维异构特征空间的分类问题。MEGP通过条件独立特征子集的分解,实现多个子种群并行进化,并通过动态集成适应度机制进行交互。实验表明,MEGP在收敛行为和泛化性能上优于基线模型,并在Log-Loss、Precision、Recall、F1分数和AUC等指标上均有显著提升。

arXiv:2509.19339v1 Announce Type: cross Abstract: This paper introduces Multi-population Ensemble Genetic Programming (MEGP), a computational intelligence framework that integrates cooperative coevolution and the multiview learning paradigm to address classification challenges in high-dimensional and heterogeneous feature spaces. MEGP decomposes the input space into conditionally independent feature subsets, enabling multiple subpopulations to evolve in parallel while interacting through a dynamic ensemble-based fitness mechanism. Each individual encodes multiple genes whose outputs are aggregated via a differentiable softmax-based weighting layer, enhancing both model interpretability and adaptive decision fusion. A hybrid selection mechanism incorporating both isolated and ensemble-level fitness promotes inter-population cooperation while preserving intra-population diversity. This dual-level evolutionary dynamic facilitates structured search exploration and reduces premature convergence. Experimental evaluations across eight benchmark datasets demonstrate that MEGP consistently outperforms a baseline GP model in terms of convergence behavior and generalization performance. Comprehensive statistical analyses validate significant improvements in Log-Loss, Precision, Recall, F1 score, and AUC. MEGP also exhibits robust diversity retention and accelerated fitness gains throughout evolution, highlighting its effectiveness for scalable, ensemble-driven evolutionary learning. By unifying population-based optimization, multi-view representation learning, and cooperative coevolution, MEGP contributes a structurally adaptive and interpretable framework that advances emerging directions in evolutionary machine learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多种群集成遗传编程 高维特征空间 分类 协同进化 多视图学习
相关文章