cs.AI updates on arXiv.org 09月25日
ISAC散射传感:CSIYOLO框架提升定位精度
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于单基站-用户设备对估计CSI的散射定位框架CSIYOLO,通过锚点检测和CSI定位算法提高ISAC散射传感定位精度。

arXiv:2509.19335v1 Announce Type: cross Abstract: ISAC is regarded as a promising technology for next-generation communication systems, enabling simultaneous data transmission and target sensing. Among various tasks in ISAC, scatter sensing plays a crucial role in exploiting the full potential of ISAC and supporting applications such as autonomous driving and low-altitude economy. However, most existing methods rely on either waveform and hardware modifications or traditional signal processing schemes, leading to poor compatibility with current communication systems and limited sensing accuracy. To address these challenges, we propose CSIYOLO, a framework that performs scatter localization only using estimated CSI from a single base station-user equipment pair. This framework comprises two main components: anchor-based scatter parameter detection and CSI-based scatter localization. First, by formulating scatter parameter extraction as an image detection problem, we propose an anchor-based scatter parameter detection method inspired by You Only Look Once architectures. After that, a CSI-based localization algorithm is derived to determine scatter locations with extracted parameters. Moreover, to improve localization accuracy and implementation efficiency, we design an extendable network structure with task-oriented optimizations, enabling multi-scale anchor detection and better adaptation to CSI characteristics. A noise injection training strategy is further designed to enhance robustness against channel estimation errors. Since the proposed framework operates solely on estimated CSI without modifying waveforms or signal processing pipelines, it can be seamlessly integrated into existing communication systems as a plugin. Experiments show that our proposed method can significantly outperform existing methods in scatter localization accuracy with relatively low complexities under varying numbers of scatters and estimation errors.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ISAC 散射传感 CSIYOLO 定位精度 通信系统
相关文章