MarkTechPost@AI 09月25日
Vision-RAG与Text-RAG的技术对比
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Vision-RAG通过检索渲染页面和视觉语言嵌入直接针对检索瓶颈,在视觉丰富语料库上显示出端到端增益。Text-RAG在PDF到文本转换过程中丢失布局语义、表格结构和图像定位,导致召回率和精确率下降。Vision-RAG通过保留布局和图像-文本关联,提升了多模态文档的检索和生成效果。

📄 Vision-RAG通过检索渲染页面和视觉语言嵌入,直接解决PDF到文本转换中丢失的布局语义、表格结构和图像定位问题,从而提升召回率和精确率。

🖼️ Vision-RAG在多模态文档上实现端到端增益,当检索和生成都使用视觉语言模型时,比Text-RAG提升25-39%,尤其在处理表格、图表、印章、旋转扫描和多语言文档时表现优异。

🔍 Vision-RAG采用选择性高保真输入策略,通过粗到细的方法(BM25/DPR检索顶部k页,然后视觉重排序,仅发送感兴趣区域裁剪到生成器),在控制成本的同时保留关键像素信息。

📊 Vision-RAG需要跨模态对齐,使用CLIP系列或视觉语言模型检索器,并采用双索引策略(廉价文本检索+视觉重排序),ColPali的晚期交互(MaxSim风格)是页面图像检索的强默认选项。

🚀 高分辨率视觉语言模型(如Qwen2-VL系列)对推理质量至关重要,因为它们能更好地处理刻度、上标、印章和小字体等细节,这些细节对DocVQA/MathVista/MTVQA等基准测试的结果有直接影响。

Most RAG failures originate at retrieval, not generation. Text-first pipelines lose layout semantics, table structure, and figure grounding during PDF→text conversion, degrading recall and precision before an LLM ever runs. Vision-RAG—retrieving rendered pages with vision-language embeddings—directly targets this bottleneck and shows material end-to-end gains on visually rich corpora.

Pipelines (and where they fail)

Text-RAG. PDF → (parser/OCR) → text chunks → text embeddings → ANN index → retrieve → LLM. Typical failure modes: OCR noise, multi-column flow breakage, table cell structure loss, and missing figure/chart semantics—documented by table- and doc-VQA benchmarks created to measure exactly these gaps.

Vision-RAG. PDF → page raster(s) → VLM embeddings (often multi-vector with late-interaction scoring) → ANN index → retrieve → VLM/LLM consumes high-fidelity crops or full pages. This preserves layout and figure-text grounding; recent systems (ColPali, VisRAG, VDocRAG) validate the approach.

What current evidence supports

Costs: vision context is (often) order-of-magnitude heavier—because of tokens

Vision inputs inflate token counts via tiling, not necessarily per-token price. For GPT-4o-class models, total tokens ≈ base + (tile_tokens × tiles), so 1–2 MP pages can be ~10× cost of a small text chunk. Anthropic recommends ~1.15 MP caps (~1.6k tokens) for responsiveness. By contrast, Google Gemini 2.5 Flash-Lite prices text/image/video at the same per-token rate, but large images still consume many more tokens. Engineering implication: adopt selective fidelity (crop > downsample > full page).

Design rules for production Vision-RAG

    Align modalities across embeddings. Use encoders trained for textimage alignment (CLIP-family or VLM retrievers) and, in practice, dual-index: cheap text recall for coverage + vision rerank for precision. ColPali’s late-interaction (MaxSim-style) is a strong default for page images.Feed high-fidelity inputs selectively. Coarse-to-fine: run BM25/DPR, take top-k pages to a vision reranker, then send only ROI crops (tables, charts, stamps) to the generator. This preserves crucial pixels without exploding tokens under tile-based accounting.Engineer for real documents.
    Tables: if you must parse, use table-structure models (e.g., PubTables-1M/TATR); otherwise prefer image-native retrieval.
    Charts/diagrams: expect tick- and legend-level cues; resolution must retain these. Evaluate on chart-focused VQA sets.
    Whiteboards/rotations/multilingual: page rendering avoids many OCR failure modes; multilingual scripts and rotated scans survive the pipeline.
    Provenance: store page hashes and crop coordinates alongside embeddings to reproduce exact visual evidence used in answers.
StandardText-RAGVision-RAG
Ingest pipelinePDF → parser/OCR → text chunks → text embeddings → ANNPDF → page render(s) → VLM page/crop embeddings (often multi-vector, late interaction) → ANN. ColPali is a canonical implementation.
Primary failure modesParser drift, OCR noise, multi-column flow breakage, table structure loss, missing figure/chart semantics. Benchmarks exist because these errors are common.Preserves layout/figures; failures shift to resolution/tiling choices and cross-modal alignment. VDocRAG formalizes “unified image” processing to avoid parsing loss.
Retriever representationSingle-vector text embeddings; rerank via lexical or cross-encodersPage-image embeddings with late interaction (MaxSim-style) capture local regions; improves page-level retrieval on ViDoRe.
End-to-end gains (vs Text-RAG)Baseline+25–39% E2E on multimodal docs when both retrieval and generation are VLM-based (VisRAG).
Where it excelsClean, text-dominant corpora; low latency/costVisually rich/structured docs: tables, charts, stamps, rotated scans, multilingual typography; unified page context helps QA.
Resolution sensitivityNot applicable beyond OCR settingsReasoning quality tracks input fidelity (ticks, small fonts). High-res document VLMs (e.g., Qwen2-VL family) emphasize this.
Cost model (inputs)Tokens ≈ characters; cheap retrieval contextsImage tokens grow with tiling: e.g., OpenAI base+tiles formula; Anthropic guidance ~1.15 MP ≈ ~1.6k tokens. Even when per-token price is equal (Gemini 2.5 Flash-Lite), high-res pages consume far more tokens.
Cross-modal alignment needNot requiredCritical: textimage encoders must share geometry for mixed queries; ColPali/ViDoRe demonstrate effective page-image retrieval aligned to language tasks.
Benchmarks to trackDocVQA (doc QA), PubTables-1M (table structure) for parsing-loss diagnostics. ViDoRe (page retrieval), VisRAG (pipeline), VDocRAG (unified-image RAG).
Evaluation approachIR metrics plus text QA; may miss figure-text grounding issuesJoint retrieval+gen on visually rich suites (e.g., OpenDocVQA under VDocRAG) to capture crop relevance and layout grounding.
Operational patternOne-stage retrieval; cheap to scaleCoarse-to-fine: text recall → vision rerank → ROI crops to generator; keeps token costs bounded while preserving fidelity. (Tiling math/pricing inform budgets.)
When to preferContracts/templates, code/wikis, normalized tabular data (CSV/Parquet)Real-world enterprise docs with heavy layout/graphics; compliance workflows needing pixel-exact provenance (page hash + crop coords).
Representative systemsDPR/BM25 + cross-encoder rerankColPali (ICLR’25) vision retriever; VisRAG pipeline; VDocRAG unified image framework.

When Text-RAG is still the right default?

Evaluation: measure retrieval + generation jointly

Add multimodal RAG benchmarks to your harness—e.g., M²RAG (multi-modal QA, captioning, fact-verification, reranking), REAL-MM-RAG (real-world multi-modal retrieval), and RAG-Check (relevance + correctness metrics for multi-modal context). These catch failure cases (irrelevant crops, figure-text mismatch) that text-only metrics miss.

Summary

Text-RAG remains efficient for clean, text-only data. Vision-RAG is the practical default for enterprise documents with layout, tables, charts, stamps, scans, and multilingual typography. Teams that (1) align modalities, (2) deliver selective high-fidelity visual evidence, and (3) evaluate with multimodal benchmarks consistently get higher retrieval precision and better downstream answers—now backed by ColPali (ICLR 2025), VisRAG’s 25–39% E2E lift, and VDocRAG’s unified image-format results.


References:

The post Vision-RAG vs Text-RAG: A Technical Comparison for Enterprise Search appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Vision-RAG Text-RAG 多模态检索 企业搜索 视觉语言模型 文档理解
相关文章