cs.AI updates on arXiv.org 09月23日 14:12
多模态推荐系统提升直播互动
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合多模态图卷积网络和用户偏好的短视频推荐系统,通过考虑用户互动数据、视频内容特征和上下文信息,实现个性化推荐。实验结果表明,该系统在Kwai、TikTok和MovieLens三个数据集上均优于基线模型。

arXiv:2506.23085v2 Announce Type: replace-cross Abstract: The purpose of this paper is to explore a multi-modal approach to enhancing live broadcast engagement by developing a short video recommendation system that incorporates Multi-modal Graph Convolutional Networks (MMGCN) with user preferences. To provide personalized recommendations tailored to individual interests, the proposed system considers user interaction data, video content features, and contextual information. With the aid of a hybrid approach combining collaborative filtering and content-based filtering techniques, the system can capture nuanced relationships between users, video attributes, and engagement patterns. Three datasets are used to evaluate the effectiveness of the system: Kwai, TikTok, and MovieLens. Compared to baseline models, such as DeepFM, Wide & Deep, LightGBM, and XGBoost, the proposed MMGCN-based model shows superior performance. A notable feature of the proposed model is that it outperforms all baseline methods in capturing diverse user preferences and making accurate, personalized recommendations, resulting in a Kwai F1 score of 0.574, a Tiktok F1 score of 0.506, and a MovieLens F1 score of 0.197. We emphasize the importance of multi-modal integration and user-centric approaches in advancing recommender systems, emphasizing the role they play in enhancing content discovery and audience interaction on live broadcast platforms.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态推荐系统 直播互动 图卷积网络 个性化推荐 短视频
相关文章