cs.AI updates on arXiv.org 09月23日
多目标优化非线性函数算法研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于策略梯度的无模型算法,用于最大化多长期目标的非线性凹函数,并通过偏置估计器计算梯度估计,证明算法在采样一定数量的轨迹后,收敛到全局最优解。

arXiv:2105.14125v2 Announce Type: replace-cross Abstract: Many engineering problems have multiple objectives, and the overall aim is to optimize a non-linear function of these objectives. In this paper, we formulate the problem of maximizing a non-linear concave function of multiple long-term objectives. A policy-gradient based model-free algorithm is proposed for the problem. To compute an estimate of the gradient, a biased estimator is proposed. The proposed algorithm is shown to achieve convergence to within an $\epsilon$ of the global optima after sampling $\mathcal{O}(\frac{M^4\sigma^2}{(1-\gamma)^8\epsilon^4})$ trajectories where $\gamma$ is the discount factor and $M$ is the number of the agents, thus achieving the same dependence on $\epsilon$ as the policy gradient algorithm for the standard reinforcement learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多目标优化 非线性函数 策略梯度 无模型算法 梯度估计
相关文章