cs.AI updates on arXiv.org 09月23日
基于众包智慧的LLM估算性能研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出三种估算数据集,并引入众包智慧解码策略,研究LLM在估算任务中的性能,发现众包解码能显著提升LLM的估算准确性。

arXiv:2501.17310v3 Announce Type: replace Abstract: Guesstimation--the task of making approximate quantitative estimates about objects or events-is a common real--world skill, yet remains underexplored in large language model (LLM) research. We introduce three guesstimation datasets: MARBLES, FUTURE, and ELECPRED, spanning physical estimation (e.g., how many marbles fit in a cup) to abstract predictions (e.g., the 2024 U.S. presidential election). Inspired by the social science concept of Wisdom of Crowds (WOC)- where the median of multiple estimates improves accuracy-we propose WOC decoding for LLMs. We replicate WOC effects in human participants and find that LLMs exhibit similar benefits: median aggregation across sampled responses consistently improves accuracy over greedy decoding, self-consistency decoding, and mean decoding. This suggests that LLMs encode a world model that supports approximate reasoning. Our results position guesstimation as a useful probe of LLM world knowledge and highlight WOC decoding as a strategy for enhancing LLM guesstimation performance on real-world tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 估算 众包智慧 数据集 性能提升
相关文章