cs.AI updates on arXiv.org 09月23日
HRA:5G/边缘联邦学习新型鲁棒聚合机制
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为HRA的新型鲁棒聚合机制,用于应对5G和边缘网络环境下联邦学习中的安全威胁。HRA结合几何异常检测和基于动量的客户信誉跟踪,实现自适应过滤可疑更新和长期惩罚不可靠客户,有效对抗包括后门插入和拜占庭随机噪声攻击在内的多种攻击。实验结果表明,HRA在5G网络数据集和NF-CSE-CIC-IDS2018基准上均取得了优于现有聚合器的性能。

arXiv:2509.18044v1 Announce Type: cross Abstract: Federated Learning (FL) in 5G and edge network environments face severe security threats from adversarial clients. Malicious participants can perform label flipping, inject backdoor triggers, or launch Sybil attacks to corrupt the global model. This paper introduces Hybrid Reputation Aggregation (HRA), a novel robust aggregation mechanism designed to defend against diverse adversarial behaviors in FL without prior knowledge of the attack type. HRA combines geometric anomaly detection with momentum-based reputation tracking of clients. In each round, it detects outlier model updates via distance-based geometric analysis while continuously updating a trust score for each client based on historical behavior. This hybrid approach enables adaptive filtering of suspicious updates and long-term penalization of unreliable clients, countering attacks ranging from backdoor insertions to random noise Byzantine failures. We evaluate HRA on a large-scale proprietary 5G network dataset (3M+ records) and the widely used NF-CSE-CIC-IDS2018 benchmark under diverse adversarial attack scenarios. Experimental results reveal that HRA achieves robust global model accuracy of up to 98.66% on the 5G dataset and 96.60% on NF-CSE-CIC-IDS2018, outperforming state-of-the-art aggregators such as Krum, Trimmed Mean, and Bulyan by significant margins. Our ablation studies further demonstrate that the full hybrid system achieves 98.66% accuracy, while the anomaly-only and reputation-only variants drop to 84.77% and 78.52%, respectively, validating the synergistic value of our dual-mechanism approach. This demonstrates HRA's enhanced resilience and robustness in 5G/edge federated learning deployments, even under significant adversarial conditions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 5G网络 安全威胁 鲁棒聚合 HRA
相关文章