cs.AI updates on arXiv.org 09月23日
MLLMs在医学图像病理定位中的性能评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文系统评估了GPT-4、GPT-5和MedGemma在胸部X光片病理定位任务中的表现,发现GPT-5表现最佳,但总体精度仍低于CNN基准和放射科医生。分析表明,MLLMs在医学图像处理方面有潜力,但需结合特定工具。

arXiv:2509.18015v1 Announce Type: cross Abstract: Recent work has shown promising performance of frontier large language models (LLMs) and their multimodal counterparts in medical quizzes and diagnostic tasks, highlighting their potential for broad clinical utility given their accessible, general-purpose nature. However, beyond diagnosis, a fundamental aspect of medical image interpretation is the ability to localize pathological findings. Evaluating localization not only has clinical and educational relevance but also provides insight into a model's spatial understanding of anatomy and disease. Here, we systematically assess two general-purpose MLLMs (GPT-4 and GPT-5) and a domain-specific model (MedGemma) in their ability to localize pathologies on chest radiographs, using a prompting pipeline that overlays a spatial grid and elicits coordinate-based predictions. Averaged across nine pathologies in the CheXlocalize dataset, GPT-5 exhibited a localization accuracy of 49.7%, followed by GPT-4 (39.1%) and MedGemma (17.7%), all lower than a task-specific CNN baseline (59.9%) and a radiologist benchmark (80.1%). Despite modest performance, error analysis revealed that GPT-5's predictions were largely in anatomically plausible regions, just not always precisely localized. GPT-4 performed well on pathologies with fixed anatomical locations, but struggled with spatially variable findings and exhibited anatomically implausible predictions more frequently. MedGemma demonstrated the lowest performance on all pathologies, showing limited capacity to generalize to this novel task. Our findings highlight both the promise and limitations of current MLLMs in medical imaging and underscore the importance of integrating them with task-specific tools for reliable use.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MLLMs 医学图像 病理定位 性能评估 GPT-4
相关文章