cs.AI updates on arXiv.org 09月23日
CGT:优化早期退出神经网络训练方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为CGT的神经网络训练方法,通过条件传播梯度,降低推理成本,提高早期退出准确性,适用于资源受限环境。

arXiv:2509.17885v1 Announce Type: cross Abstract: Early-exit neural networks reduce inference cost by enabling confident predictions at intermediate layers. However, joint training often leads to gradient interference, with deeper classifiers dominating optimization. We propose Confidence-Gated Training (CGT), a paradigm that conditionally propagates gradients from deeper exits only when preceding exits fail. This encourages shallow classifiers to act as primary decision points while reserving deeper layers for harder inputs. By aligning training with the inference-time policy, CGT mitigates overthinking, improves early-exit accuracy, and preserves efficiency. Experiments on the Indian Pines and Fashion-MNIST benchmarks show that CGT lowers average inference cost while improving overall accuracy, offering a practical solution for deploying deep models in resource-constrained environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络 早期退出 CGT 梯度传播 资源受限
相关文章